ОПТИМИЗАЦИЯ РЕЖИМА РАБОТЫ ПОЛОЧНЫХ РЕАКТОРОВ С НЕПОДВИЖНЫМ СЛОЕМ В ПРОЦЕССЕ АРОМАТИЗАЦИИ УГЛЕВОДОРОДОВ С₅

А.В. Балаев, Д.А. Дель Торо Фонсека, И.И. Лищинер, Ю.Л. Вяткин

Каталитическое превращение легких предельных и непредельных углеводородов C_2 - C_5 в более ценные продукты, такие как бензол, толуол и ксилолы (БТК), привлекает достаточно серьезное внимание различных исследователей [1-3]. Анализ данных, приведенных в научной литературе при разработках кинетических моделей процесса ароматизации легких углеводородов, показывает, показывает, что большинство исследований проводилось с фракциями C_2 - C_4 . Процесс ароматизации фракции C_5 изучен недостаточно детально.

Анализ подходов при разработках кинетических моделей [1-3] ароматизации углеводородов C_2 - C_4 , а также анализ материального баланса установки ароматизации фракции ароматических углеводородов C_5 позволили разработать кинетическую модель реакции. Схема превращений в реакции ароматизации углеводородов C_5 , включающая 18 стадий, и соответствующие ей кинетические уравнения скоростей стадий представляются системой (1):

Где: x_1 – пентан (C_5H_{12}), x_2 – пентен (C_5H_{10}), x_3 – этилен (C_2H_4), x_4 – пропан (C_3H_8), x_5 – пропилен (C_3H_6), x_6 – бутилен (C_4H_8), x_7 – бензол (C_6H_6), x_8 – толуол (C_7H_8), x_9 – ксилол (C_8H_{10}), x_{10} – тяжелые ароматические углеводороды (C_{9+}), x_{11} – метан (CH_4), x_{12} – этан (C_2H_6), x_{13} – бутан (C_4H_{10}), x_{14} – водород (H_2).

Для изучения закономерностей процесса ароматизации углеводородной фракции C₅ в адиабатическом реакторе с неподвижным слоем катализатора разработана математическая модель, которая учитывает увеличение мольной скорости движения реакционной смеси за счет реакций (1)...(18). При разработке модели сделаны следующие допущения: диффузия не оказывает заметного влияния на протекание процесса; распределение реакционного потока равномерно по сечению реактора; в реакторе обеспечивается идеальный контакт сырья с катализатором.

Математическое описание процесса ароматизации углеводородов C₅ представляется системой уравнений материального баланса (2)-(3):

$$\frac{1}{S}\frac{dN}{dl} = \sum_{j} \delta_{j} \omega_{j} = F_{N}, \qquad \delta_{j} = \sum_{i} v_{ij}, \qquad j=1...18$$
(2)

$$\frac{1}{S}\frac{dx_i}{dl} = \frac{F_i - x_i F_N}{\overline{N}}, \qquad l=0; \quad x_i = x_i^\circ, \quad \overline{N} = 1, =1...14$$
(3)

граничные условия – при:

где: x_i – концентрации компонентов, мольные доли; vij– стехиометрические коэффициенты, определяемые схемой реакций (1); =N/N_o – относительное изм $\overline{\mathbf{N}}$ ние числа молей реакционной смеси; N=V×C и N_o=V_o×C_o; N и N_o (V и V_o) – мольные и объемные скорости подачи реакционной смеси и их начальные значения, кмоль/мин, (м3/мин); С и Со – мольная плотность реакционной смеси и ее начальное значение, кмоль/м3; w_j=W_j/Co – приведенные скорости химических реакций, мин-1; W_j – скорости химических реакций, кмоль/м3/мин; S – площадь поперечного сечения реактора, м2; 1 – осевая координата, м.

Прямая задача была решена полунеявным итерационным методом Эйлера. Представим функции F_i и F_n в уравнениях (2)-(3) в виде:

$$\mathbf{F}_{\mathbf{i}} = -\mathbf{a}_{\mathbf{i}}\mathbf{x}_{\mathbf{i}} + \mathbf{b}_{\mathbf{i}}, \qquad \mathbf{F}_{\mathbf{N}} = \mathbf{F}_{\mathbf{n}\mathbf{l}\mathbf{j}} - \mathbf{F}_{\mathbf{n}\mathbf{2}\mathbf{j}}$$

Тогда:

$$x_i^{n+1} = S \frac{\overline{N^n \cdot x_i} + B_i^n \cdot h}{\overline{N^n + A_i^n} \cdot h} \qquad A_i = a_i + F_{n1j} \qquad (4)$$

$$N_i^n = \overline{N}_i + S \cdot h \cdot F_N^n$$

где X_i – решение на предыдущем шаге по координате ; a_i – сумма отрицательных F_i (vij в (3) меньше 0); b_i – сумма положительных F_i (vij в (3) больше 0); F_{n1j} – сумма положительных слагаемых F_N ; F_{n2j} – сумма отрицательных слагаемых F_N ; $h = l_i - l_{i-1}$ — шаг интегрирования по пространственной координате.

В табл.1 приведены численные значения кинетических параметров, найденные при решении обратной кинетической задачи.

Константы (k_i) табл.1 являются некоторыми приведенными величинами, которые имеют размерность обратного времени и связаны с истинными константами (K_i) соотношениями: k_i=K_i (i=1-4, 23-25), размерность K_i (мин⁻¹), k_i=K_i×C_o (i=5-22), размерность K_i (м³×кмоль⁻¹×мин⁻¹).

Сравнение экспериментальных данных с расчетными, полученными с помощью математического описания (2)-(3) и кинетических уравнений (1) с найденными кинетическими параметрами, показало, что разработанная кинетическая модель адекватно описывает опытные данные.

Таблица 1. Численные значения кинетических параметров реакции ароматизации углеводородной фракции С₅ на цеолитном катализаторе

№ константы	К _i (430), мин ⁻¹	Е _і , ккал/моль	№ константы	k _i (430°C), мин ⁻¹	Е _і , ккал/моль
1	3.97	34.7	14	5.104	21.2
2	3.21	33.1	15	4.835	20.6
3	1.65	33.0	16	106.6	25.6
4	0.7116	22.6	17	137.8	18.2
5	1.733	22.9	18	935.8	19.3
6	477.4	26.3	19	0.1221	15.4
7	584.0	24.3	20	0.0614	17.4

8	303.3	18.4	21	0.033	25.2
9	519.9	31.1	22	0.1378	11.8
10	433.2	23.8	23	0.0486	27.3
11	1300.0	11.4	24	0.242	20.3
12	866.5	27.4	25	0.2384	23.9
13	8.838	19.9			

Ошибка количественного описания суммарных выходов газовой фазы, фракции ароматических углеводородов (ФАУ) и входящей в нее целевой фракции БТК (бензол, толуол, ксилолы) не превышает 8% относительных.

Так, для температуры 430°С и давлении 9 атм выходы фракций (%мас.) составляют (первая цифра – эксперимент, вторая – расчет): газ (35.2 и 35.7), ФАУ (64.8 и 64.3) с содержанием БТК (67.6 и 67.6). Для температуры 430°С и давлении 19 атм: газ (49.9 и 50.7), ФАУ (50.1 и 49.3) с содержанием БТК (84.8 и 92.9). Для температуры 455°С и давлении 9 атм: газ (45.1 и 43.8), ФАУ (54.9 и 56.2) с содержанием БТК (86.8 и 87.7).

Найденные кинетические параметры позволяют адекватно описать данные по изменению концентраций компонентов фракции ароматических углеводородов (ФАУ) во всей исследованной области изменений температуры и давления.

Однако в расчетах состава газовой фазы по сравнению с экспериментом наблюдается большее содержание метана и меньшее содержание водорода, что связано, по-видимому, с неточным определением содержания этих компонентов в реакционной массе.

При переходе к высоким давлениям и температурам количественное описание отдельных компонентов газовой фазы ухудшается.

В проведенных расчетах можно выделить следующие положительные моменты положительные моменты. Всегда количественно описываются выходы всех фракций, а также конверсия исходного C_5H_{12} . При повышении давления или температуры наблюдается увеличение конверсии пентана (что естественно), повышение селективности образования фракции БТК, а также уменьшение содержания олефинов C_1 - C_4 и повышение содержания этих парафинов, что подтверждается опытными данными.

Это позволяет использовать разработанную кинетическую модель реакции ароматизации углеводородов С₅ для последующего моделирования процесса в реакционных аппаратах.

В таблице 2 показаны расходные и тепловые параметры.

и тепловые парамТаблица 2

Загрузка	Объем слоя	Мольная скорость подачи, кмоль/ч		Температура в реакторе, оС		Выход БТК	
катализатора, м3 (пропорции)	катали- затора, м3	Вход	Выход	Вход	Выход	% мас.	кг/ч
3	0.75	17.99	24.55	480.0	351.1		
(1:1:2)	0.75	24.55	31.88	480.0	372.1	67.0	535.3
	1.5	31.88	40.0	480.0	399.5		
3.5	0.875	17.99	24.74	480.0	347.9	71.2	558.0
(1:1:2)	0.875	24.74	32.3	480.0	370.0		
	1.75	32.3	40.68	480.0	403.1		
3	0.6	17.99	24.29	480.0	355.8	91.1 65	652.9
(1:1:1:2)	0.6	24.29	31.28	480.0	375.5		
	0.6	31.28	37.7	480.0	403.4		
	1.2	37.7	43.59	480.0	450.4		
3	0.5	17.99	24.08	480.0	359.6		652.4
(1:1:2:2)	0.5	24.08	30.8	480.0	378.3	-90.8	
	1.0	30.8	38.27	480.0	394.7		
	1.0	38.27	43.53	480.0	454.4		
2.5	0.5	17.99	24.08	480.0	359.6		636.3
(1:1:1:2)	0.5	24.08	30.8	480.0	378.3		
	0.5	30.8	36.98	480.0	403.6		
	1.0	36.98	43.16	480.0	444.0		

Для решения задачи применялась технология параллельных вычислений с использованием несколько процессоров. Прямая задача была решена итерационным полунеявным методом Эйлера, который предусматривает корректировку концентраций компонентов на каждой итерации. Из литературных данных [4] известно, что увеличение числа процессоров в 10 раз, ускоряет производительность вычислений задачи в 3-5 раз. Видно, что распараллеливание по пути увеличения числа процессоров недостаточно эффективно.

Для организации вычислительного процесса предложена трехуровневая модель распараллеливания, объединяющая распараллеливание по экспериментальной базе, в соответствии с внутренним параллелизмом задачи и на основе декомпозиции метода решения.

На первом уровне все множество процессоров многопроцессорной вычислительной системы разбивается на подмножества для решения обратной задачи при конкретном наборе начальных данных. При этом организация взаимодействия с базой данных осуществляется по принципу master-slave, при котором выбирается один управляющий процессор, имеющий доступ к базе данных и выполняющий распределение данных между всеми рабочими процессорами.

На втором уровне распараллеливания каждое подмножество процессоров относят к различным коммуникаторам (областям связи) в соответствии с внутренним параллелизмом задачи, который для рассматриваемой задачи заключается в возможности независимого решения задачи для выделенных, частных, детализированных и общих реакций.

Третий уровень распараллеливания включает декомпозицию алгоритма решения обратной задачи по числу процессоров, входящих в созданные процессорные коммуникаторы. Для параллельного решения

обратной задачи химической кинетики использован показавший наибольшую эффективность генетический алгоритм.

Время расчета при различных методах решения:

- 1. Классический метод Кутты-Мерсона [5] 850 минут.
- 2. Предлагаемый нами полунеявный метод Эйлера (4) 900 минут.
- 3. Поиск по этому методу кинетических параметров требует несколько большего времени, однако, найденные кинетические константы позволяют лучше описать экспериментальные данные.
- 4. Полунеявный метод Эйлера с распараллеливанием на четырехядерном процессе 300 минут.

Таким образом, увеличение числа процессоров в 4 раза ускорило производительность вычисления задачи приблизительно в 3 раза, что является достаточно хорошим результатом. Вычисления производились с помощью программного интерфейса передачи сообщений MPI.

ЛИТЕРАТУРА:

- 1. Б.И Кутепов., О.Ю. Белоусова. Ароматизация углеводородов на пентасилсодержащих катализаторах. М.: Химия, 2000. 95с.
- 2. D.B. Lukyanov, N.S. Gneep, M.R. Guisnet Kinetic modeling of ethane and propene aromatization over HSM-5 and GaHSM-5 // Ind. Eng. Chem., Res.1994. V.33. P.223-234.
- 3. A.K. Jana , M.S. Rao Selective aromatization of C₃- and C₄-parafins over encilite catalysts. 2. Kinetics of n-butane aromatization // Ind. Eng. Chem., Res. 1993. V.32. P.2495-2499.
- 4. Г.В. Ващенко, Е.А. Новиков Параллельная реализация явного метода Эйлера с контролем точности вычислений // Журнал СФУ. Серия: математика и физика. 2011. № 4(1). С.70-76.
- 5. Augustin S.C. Modified Mersons investigation algorithm with saves two evaluation at each step // Simulation. 1974. V. 22. № 3. P. 90-92.