

Международная суперкомпьютерная конференция НАУЧНЫЙ СЕРВИС В СЕТИ ИНТЕРНЕТ ВСЕ ГРАНИ ПАРАЛЛЕЛИЗМА

АSTROPHI: программный комплекс для моделирования динамики астрофизических объектов на гибридных суперЭВМ, оснащенных ускорителями Intel Xeon Phi

> Глинский Б.М. (ИВМиМГ СО РАН) Куликов И.М. (ИВМиМГ СО РАН) Черных И.Г. (ИВМиМГ СО РАН)

Абрау-Дюрсо 2013

О гранях параллелизма

Грани эффективной параллельной реализации

3

Актуальность работы

«Движение галактик в плотных скоплениях превращает столкновения между ними в важный эволюционный фактор»

> Тутуков А.В., 2006 Астрономический журнал

Современные программные реализации:

Code	Hydrodynamical method	Poisson solver	HPC technologies	Correctness checking
Hydra	SPH	Adaptive $P^3M + FFT$	High Performance Fortran	+
Gasoline	SPH	Tree code $+$ Multipole Method	MPI	_
GrapeSPH	SPH	Direct Summation	GRAPE	_
GADGET-2	SPH	TreePM + FFT	MPI	_
NIRVANA	AMR+HLL	Multigrid	MPI	_
FLASH	AMR+PPM	Multigrid	MPI	+
ZEUS-MP	Finite difference method	FFT+Multigrid	MPI	_
ENZO	AMR+PPM	FFT+Multigrid	MPI	_
RAMSES	AMR+HLLC	Multigrid + CG	OpenMP+MPI	+
ART	AMR+MUSCL	\mathbf{FFT}	MPI	_
Athena	Roe's solver	\mathbf{FFT}	MPI	_
Pencil Code	Finite difference method	\mathbf{FFT}	HPF+MPI	+
Heracles	MUSCL	$\overline{\mathrm{CG}}$	MPI	_
Orion	AMR+MUSCL	Multigrid	_	+
Pluto	AMR+HLLC	Analytical	MPI	_
CASTRO	AMR+PPM	Multigrid	MPI+OpenMP	_
GAMER	AMR+TVD	$\rm FFT+SOR$	CUDA+MPI	_
BETHE-Hydro	Arbitrary Lagrangian-Eulerian	Matrix Inverse	_	_
AREPŎ	Moving mesh $+$ MUSCL	$\mathrm{TreePM} + \mathrm{FFT}$	MPI	_
CHIMERA	Moving mesh $+$ PPM	Analytical	_	_
PEGAS	$\mathrm{Fll}\check{\mathrm{C}}+\mathrm{Godunov}$	$\mathbf{F}\mathbf{\check{F}}\mathbf{T}$	MPI	+

Задача столкновения галактик

Модель галактики:

- Газовая компонента (~ 50 % массы <)</p>
- Бесстолкновительная звездная компонента (~ 50 % массы
- Гравитационное взаимодействие (Newton, 1666)
- Процесс охлаждения газа (Sutherland & Dopita, 1993)
 Система уравнений гравитационной газовой динамики

$$\begin{aligned} \frac{\partial \rho}{\partial t} + div(\rho \vec{v}) &= 0 \\ \frac{\partial \rho \vec{v}}{\partial t} + div(\vec{v}\rho \vec{v}) &= -grad(p) - \rho grad\Phi \\ \frac{\partial \rho E}{\partial t} + div(\rho E \vec{v}) &= -div(p \vec{v}) - (\rho grad\Phi, \vec{v}) - Q \\ \frac{\partial \rho \varepsilon}{\partial t} + div(\rho \varepsilon \vec{v}) &= -(\gamma - 1)\rho \varepsilon div(\vec{v}) - Q \\ p &= \rho \varepsilon (\gamma - 1) \\ \Delta \Phi_{self} &= 4\pi\rho \qquad \Phi = \Phi_{self} + \Phi_{e} \end{aligned}$$

Область: кубическая Координаты: декартовые Сетка: равномерная эйлеровая

Краевыеусловиягазодинамическойсистемыуравнений:Однородныеусловия 2го родакраевые

Краевые условия для уравнения Пуассона: Фундаментальное решение уравнения Лапласса 4

Методы решения уравнений гравитационной газовой динамики

Эйлеровы методы на адаптивных сетках (AMR)

Эйлеровы методы:

- Метод Годунова
- Метод Куранта-Изааксона-Риса
- Метод Роу
- Метод Ошера
- HLL-, HLLE-, HLLC-методы
- MUSCL-схема (2-й порядок)
- TVD-схемы (2-й порядок)
- РРМ-метод (3-й порядок)

Лагранжев метод сглаженных частиц (SPH)

Методы поиска частиц:

- Р³М-метод
- АР³М-метод
- Tree-code метод
- Tree-PM метод

Методы решения уравнения Пуассона:

- Аналитическое задание потенциала
- Метод сопряженных градиентов
- Метод быстрого преобразования Фурье
- Метод Федоренко (многосеточный метод)

Параллельные реализации SPH и AMR методов

SPH метод (Smoothed Particle Hydrodynamics)

Стратегия распределения частиц*

* Springel V. The cosmological simulation code GADGET-2 // MNRAS, V. 364, Issue 4, 2005. pp. 1105-1134

Потолок масштабируемости ~100 ядер

Ferrari, A. A New Parallel SPH Method for 3D Free Surface Flows / A. Ferrari [et al.] // High performance computing on vector systems 2009. - 2010. - Part 4. - P. 179-188. AMR метод (Adaptive Mesh Refinement)

Стратегия распределения ячеек*

* P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein, C. Packer. PARAMESH : A parallel adaptive mesh refinement community toolkit // Computer Physics Communications, vol. 126, 2000, p.330-354

Потолок масштабируемости ~10 000 ядер

Van Straalen, B. Scalability challenges for massively parallel AMR applications / B. Van Straalen [et al.] // In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing (IPDPS '09). – 2009. – IEEE Computer Society, Washington, DC, USA. – P. 1–12.

Общая проблема – слабый параллелизм древесных алгоритмов

Сильные и слабые стороны методов

SPH метод

- Точное нахождение потенциала
- Галилеева инвариантность
- Пространственная адаптация
- Постоянное разрешение
- Произвольная геометрия задачи
- Адаптация на многомерный случай
- Проблема разрывов
- Проблема радиуса сглаживания
- Искусственная вязкость
- Подавление неустойчивости
- Малый градиент плотности
- Масштабируемость

AMR методы

- Воспроизведение разрывов
- Отсутствие схемных параметров
- Произвольные градиенты плотности
- Слабая устойчивость методов
- Пространственная адаптация
- Воспроизведение турбулентности
- Ограничение разрешения сеткой
- Проблема перехода между сетками
- Сеточные эффекты
- Проблема инвариантности
- Ограничения по геометрии задачи
- Масштабируемость

Использование регулярных сеток

Достоинства регулярных сеток

- отсутствие схемных параметров
- высокая точность описания любых разрывов
- поддержание одного разрешения во всей области
- простота реализации
- потенциально бесконечная масштабируемость
- отсутствие пересчёта с одной сетки на другую

Недостаток регулярных сеток

разрешение эйлеровых моделей определяется используемой сеткой

Решение

Использование большого числа вычислительных ядер

Комбинация метода крупных частиц и метода Годунова CCKL

<u>Эйлеров этап</u>

Метод решения уравнения Пуассона

Решаем в пространстве гармоник уравнение Пуассона

27-точечный шаблон

$$\varphi_{jmn} = -\frac{4\pi h^2 \rho_{jmn}}{6\left(1 - \left(1 - \frac{2}{3}\sin^2\left(\frac{\pi j}{I}\right)\right) \left(1 - \frac{2}{3}\sin^2\left(\frac{\pi m}{K}\right)\right) \left(1 - \frac{2}{3}\sin^2\left(\frac{\pi n}{L}\right)\right)\right)}$$

Коэффициенты преобразования с помощью преобразования Фурье (в реализации использовано быстрое преобразование Фурье)

Модель бесстолкновительной компоненты

<u>Решение задачи N-тел</u>

- Прямое моделирование ограничено 10⁷ частиц для суперЭВМ
- Проблема корректного выбора ядра и необходимость минимального количества частиц в ячейке в комбинации «частица-сетка-дерево» методах для упрощения решения задачи N-тел
- Необходимость балансировки загрузки при использовании суперЭВМ

Подход сплошной среды

- Газовая динамика с нулевым давлением (Chertock, Kurganov, Rykov, 2007; Keppens, Van Marle, Meliani 2012)
- Классическая газовая динамика (Кіт, Seo 2012; Price 2013; все работы, основанные на SPH методе)
- Первые моменты уравнения Больцмана (Mitchell, Vorobyov, Hensler 2012; Binney, Tremaine 1987)

Недостаток гидродинамического подхода

Вопрос применимости подхода в каждой конкретной задаче

Физическая модель

Первые моменты уравнения Больцмана

$$\begin{aligned} \frac{\partial f}{\partial t} + v_i \frac{\partial f}{\partial x_i} + a_i \frac{\partial f}{\partial v_i} &= 0 \\ d^3 v = dv_x dv_y dv_z \\ n &= \int m f d^3 v \\ u &= n^{-1} \int m f v d^3 v \\ \sigma_{ij}^2 &= n^{-1} \int m f \left(v_i - u_i \right) \left(v_j - u_j \right) d^3 v = \sigma_{ji}^2 \end{aligned}$$

- Важно движения кластера, а не отдельной частицы
- Отсутствуют теплопроводные эффекты (свойство почти всех астрофизических задач)
- Дисперсия скоростей значительно меньше квадрата скорости

$$\begin{aligned} \partial n &+ div (n u) = 0 \\ \partial t &\uparrow \\ \partial n u \\ \partial t &+ div (u n u) = -grad (n \sigma^{2}) - \rho grad (\Phi_{gas} + \Phi_{e}) \\ \partial n E_{ii} &+ div (n E_{ij} u) = -div (2n \sigma_{ij}^{2} u) - 2 (n u, grad (\Phi_{gas} + \Phi_{e})) \\ n E_{ij} &= n \sigma_{ij}^{2} + \rho u_{i} u_{j} \\ \Delta (\Phi_{gas} + \Phi_{e}) = 4\pi (\rho + n) \end{aligned}$$

12

Геометрическая декомпозиция расчетной области

CCKL

Масштабируемость параллельной реализации

Сильная масштабируемость – уменьшение времени счета одного шага одной и той же задачи при использовании большего числа вычислительных устройств

Слабая масштабируемость – сохранения времени счета одного шага одного и того же объема задачи при одновременном увеличении количества вычислительных устройств

Верификация численного метода

- Тесты Годунова (3 теста о задаче распада разрыва)
- Тест для первых моментов уравнения Больцмана (задача о распаде разрыва 10 первых моментов)
- Тест Аксенова (новый тест с гладким аналитическим решением)
- Задача Седова о точечном взрыве
- Неусточивости Кельвина-Гельмгольца и Релея-Тейлора
- Задача получения равновесных вращающихся конфигураций
- Четвертая венгеновская задача столкновения самогравитирующих газовых сфер
- Авторская задача столкновения самогравитирующих газовых сфер
- Сжатие не вращающегося газового облака
- Сжатие вращающегося молекулярного облака
- Сжатие быстровращающегося газового облака

Задачи коллапса астрофизических объектов

 $R = 100 \ pc$

 $\rho(r) \sim 1$

Сжатие вращающегося молекулярного облака

ССКГ

Куликов И.М., Черных И.Г., Глинский Б.М., AstroPhi: программный комплекс для моделирования астрофизических объектов на гибридных суперЭВМ, оснащенных ускорителями Intel Xeon Phi // Вестник ЮУрГУ, 2013 (в печати)

Сжатие быстровращающегося газового облака

17

Центральное столкновение газовых компонент галактик

ШK

Рассеивание газа

0,4 0,6

Пролёт галактик образование третьей

 $\alpha = \frac{10^{-3}}{E_{int}}/|E_{grav}|$

Вычислительные эксперименты с помощью суперЭВМ позволили подтвердить гипотезу об образовании одной или двух галактик, полученных в результате столкновений, либо полное разрушение галактик И получить условия развития каждого И3 сценариев столкновения. Важнейшим же результатом моделирования стало получение условий и развитие нового сценария образования третьей галактики, лишённой звёздной компоненты. В дальнейшем тщательное теоретическое исследование механизмов центрального столкновения газовых компонент галактик подтвердили условия и сам факт сценария образования третьей галактики.

- 1. Vshivkov V., Lazareva G., Snytnikov A., Kulikov I., Tutukov A. ApJS, 194. 2011, 47
- 2. Тутуков А.В., Лазарева Г.Г., Куликов И.М. Астрономический журнал, том 88, № 9. 2011, с. 1-15

3 4 5

1 2 3 4 5 6

2

2 3 4 5 6

4 5

2 3

3 4 5

Образование кольцевой галактики

«... Они появляются при специфическом столкновении, когда одна из галактик «вторженец» проходит точно через диск второй «цель» ...».

Вариация скорости вращения сталкивающихся галактик

Hoag's Object

Моделирование хвостов галактик

Модель первых моментов уравнения Больцмана позволяет получать качественные решения, допускающие разлет самогравитирующих сфер. Что позволяет использовать данный подход для описания бесстолкновительной компоненты галактик в задачах их взаимодействия (в том числе столкновения).

Европейская осень 2013

Гравитация

Exascale Computing in Astrophysics

Centro Stefano Franscini Monte Verita, Ascona, Switzerland 8 September - 13 September 2013

CCKI

Перспективы решения уравнения Пуассона

$$\begin{aligned} \frac{\partial \rho}{\partial t} + div(\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + div(\mathbf{v}\rho \mathbf{v}) &= -grad(p) - \rho grad\Phi \\ div(grad\Phi) &= 4\pi\rho \\ grad\Phi &= \mathbf{F} \end{aligned}$$

$$\begin{aligned} \mathbf{V}_{\text{равнения}} & \mathbf{F}_{t} &= 4\pi r \mathbf{v} + rot(\mathbf{v} \times \mathbf{F}) \end{aligned}$$

*) Чуев Н.П. Построение трехмерной эволюционной дифференциальной модели динамики политропного самогравитирующего газа // Вестник УрГУПС, № 1 (9), 2011, с. 14-21

Подготовленные статьи

- 1. Kulikov I., Chernykh I., Snytnikov A., Tutukov A., Glinsky B. AstroPhi: a software package for complex simulation of dynamics of astrophysical objects using hybrid supercomputers // Computer physics communications, 2013 (submitted)
- 2. Куликов И.М., Черных И.Г., Глинский Б.М., AstroPhi: программный комплекс для моделирования астрофизических объектов на гибридных суперЭВМ, оснащенных ускорителями Intel Xeon Phi // Вестник ЮУрГУ, 2013 (в печати)
- 3. Kulikov I. GPUPEGAS: a new GPU-accelerated hydrodynamical code for numerical simulation of interacting galaxies // The Astrophysical Journal Supplement Series, 2013 (submitted)

Работа выполнена при финансовой поддержке грантов РФФИ №12-01-31352 мол-а, 13-07-00589-а, 12-07-00065-а, 13-01-00231-а, 11-05-00937; МИП № 39 СО РАН, МИП № 130 СО РАН; гранта Президента РФ МК-4183.2013.9; Программы Президиума РАН Проект № 15.9; гранта Мэрии города Новосибирска.

Спасибо

3a

внимание