Эффективное использование многоядерных сопроцессоров при суперкомпьютерном статистическом моделировании электронных лавин

М.А. Марченко

ИВМиМГ СО РАН, Новосибирск

Абрау-Дюрсо, 27 сентября 2013 г.

Коллектив

Результаты получены в рамках выполнения междисциплинарного интеграционного проекта СО РАН №126 "Импульсные разряды в газах высокого давления и моделирование газоразрядных, плазмохимических и газодинамических процессов методом Монте-Карло".

Координаторы проекта по институтам:

- член-корр. Г.А. Михайлов, д.ф.-м.н. С.В. Рогазинский (ИВМиМГ СО РАН);
- д.ф.-м.н. Ю.Д. Королев (ИСЭ СО РАН)

Участники проекта по институтам:

- д.ф.-м.н. С.А. Ухинов, к.ф.-м.н. Г.З. Лотова, к.ф.-м.н. М.А. Марченко (ИВМиМГ СО РАН)
- д.ф.-м.н. В.В. Рыжов, В.А. Шкляев (ИСЭ СО РАН)

Аннотация

• Разработан параллельный **трехмерный** алгоритм статистического моделирования электронных лавин.

Алгоритм учитывает ускорение электронов в электрическом поле, процессы упругого рассеяния электронов на молекулах газа и ионизации, а также возбуждения. Для этого используются соответствующие сечения 24-х типов взаимодействий для азота.

- Алгоритм реализован в программе ELSHOW (Electron SHOWer).
- Программа ELSHOW апробирована на кластере HKC-30T с MPP архитектурой (ИВМиМГ СО РАН) и на кластере MBC-10П с сопроцессорами Intel Xeon Phi (МСЦ РАН).

План доклада

- Постановка задачи
- Описание алгоритма
- Результаты расчетов
- Параллельная реализация

Постановка задачи

Схема плазматрона с камерой для взятия проб выходящего газа и электрической схемой питания разряда.

Постановка задачи

Типичный вид ионного остова лавины (результат моделирования)

Цели численного моделирования:

- описание предпробойной стадии в лавине (т.е. до момента, когда собственное электрическое поле электронов и ионов лавины становится сравнимым с внешним электрическим полем).
- получение в заданные моменты времени числа частиц в лавине
 n, положения центра масс лавины r_c = (<x>, <y>, <z>), средней скорости частиц <V_z>, средней энергии частиц <ɛ>, гистограммы плотности частиц, а также их среднеквадратические погрешности.
- сравнение результатов численного моделирования с известными экспериментальными и расчетными данными.

На основе результатов моделирования вычисляются различные характеристики лавины (**функционалы**):

- скорость центра масс $V_c = \langle z \rangle / t_{max}$
- скорость дрейфа $V_{dr} = \langle V_z \rangle$.
- коэффициенты поперечной D_T и продольной диффузии D_L находятся путем определения по гистограмме соответствующих диффузионных радиусов
- коэффициент ударной ионизации α по формуле:

$$\alpha = (V_c - (V_c^2 - 4 \beta_i)^{1/2}) / (2 D_L),$$

где $\beta_i = \ln (n/n_0) / t_{max}$ - частота ионизации.

По методу Монте-Карло моделируются независимые реализации электронной лавины

$$\xi_1, \xi_2, ..., \xi_N$$

Каждая реализация ξ_i состоит из большого числа электронов.

Для каждой реализации лавины вычисляются значения заданной функции

$$\varphi_{i} = f(\xi_{i}), i=1,2,...,N$$

Полученные реализации { ϕ_i } осредняются и по закону больших чисел получается оценка нужного функционала (т.е. некоторой характеристики лавины):

$$\varphi = \frac{1}{N} \sum_{i=1}^{N} \varphi_i$$

- Для численного статистического моделирования реализаций лавины используется метод индивидуальных соударений.
 В основе модели – ветвящийся марковский случайный процесс.
 Моделируется траектория каждого электрона.
- Отличительно особенностью такого подхода, по сравнению с другими методами (например, методом расчета функции распределения, численного решения уравнений переноса или метода «утолщенных» траекторий или укрупненных соударений) является возможность изучения динамики процесса развития лавины во времени и влияния на нее незначительных флуктуаций.

В неподвижном газе рассматривается система анод-катод с внешним электрическим полем, напряженность которого $E = (0, 0, -E_z)$ считается постоянной.

Описание алгоритма

- С катода из точки *r* = (*x*, *y*, *z*) = (0, 0, 0) в момент времени *t* = 0 происходит выброс *n*₀ электронов с нулевыми энергиями.
- Прослеживаются траектории движения каждого из первичных электронов, а также всех вторичных электронов, образовавшихся в результате ионизации, до достижения времени $t_{\rm max}$.
- Делаются одинаковые шаги Δt по времени. За время Δt электрон с энергией T_{i-1} движется из точки r_{i-1} до точки r_i, где i – номер шага. При этом координаты и скорости изменяются следующим образом:

$$r_{i} = r_{i-1} + v_{i-1} \Delta t - e E |v_{i-1}|^{2} \Delta t^{2} / (4 T_{i-1}),$$

$$v_{i} = v_{i-1} - e E |v_{i-1}|^{2} \Delta t / (2 T_{i-1}).$$

В конце каждого шага разыгрывается столкновение электрона с атомами газа с вероятностью

$$P = 1 - \exp(- \sigma_t (T_i) N \Delta I),$$

где б_t – полное микроскопическое сечение взаимодействий, *N* – концентрация частиц газа.

При столкновении разыгрывается тип взаимодействия электрона с атомом в соответствие с заданными таблицами сечений:

- упругое рассеяние налетающего электрона на атоме газа,
- один из видов возбуждения атома электроном,
- ионизация атома с образованием вторичного электрона

Лексикографическая схема

- При моделировании развития лавины в массив частиц («магазин») фактически записываются лишь вторичные частицы, которые образовались в результате ионизации.
- Затем моделируется путь одной из вторичных частиц до достижения времени $t_{\rm max}$, и так далее до тех пор, пока все вторичные частицы не будут рассмотрены.

14

- Данная вычислительная модель хорошо согласуется с теоретическими и экспериментальными данными при
 E_z/p < 200 B/(см[•]Topp)
- В проведенных расчетах с использованием ELSHOW относительная погрешность оценки характеристик лавины около 3 %.

Результаты расчетов

Зависимость скорости дрейфа (*a*) и приведенного коэффициента ударной ионизации (*б*) от *E_z* / *p;* «крестики» - ELSHOW, сплошные кривые – BOLSIG+, точки – данные экспериментов

Результаты расчетов

С помощью метода Монте-Карло можно учитывать маловероятные события.

Электронные лавины в азоте при $E_z/p = 50$ B/(см⁻Topp), t = 90 нс **(а)** и $E_z/p = 500$ B/(см⁻Topp), t = 0.055 нс **(б)**

Большая трудоемкость алгоритма обусловлена:

- большим временем моделирования каждой реализации вследствие:
 - большого числа шагов по времени
 - большого числа частиц в лавине (до 10⁸ 10⁹ частиц).
 Число частиц в лавине растет экспоненциально со временем.
- большой дисперсией оценок функционалов
- большими потребностями в оперативной и дисковой памяти для хранения рабочих массивов (до нескольких Гб на каждую траекторию).

Параллельная реализация

Крупнозернистое распараллеливание состоит в перенаправлении моделирования независимых реализаций лавины на разные вычислительные ядра, причем допустимо использовать ядра с разной производительностью.

Параллельный генератор случайных чисел

- Следует определять различные подпоследовательности базовых псевдослучайных чисел для моделирования соответствующих реализаций лавины электронов.
- Такой способ можно назвать распределительным, так как он особенно удобен для распределенных вычислений.
- В частности, распределительный способ коррелирует статистические оценки для различных вариантов задачи, улучшая параметрический анализ результатов.
- Предлагаемый распределительный способ использовался, например, для выбора шага по времени.

Базовый 128-битный линейный конгруэнтный генератор

$$u_0 = 1, u_n \equiv u_{n-1} A \pmod{2^{128}}, \alpha_n = u_n 2^{-128}, n = 1, 2, ...$$

 $A \equiv 5^{100109} \pmod{2^{128}}$

Параллельный генератор (формулы для начальных значений в параллельных подпоследовательностях):

$$u_{(m+1)\mu} = u_{m\mu} A_{\mu} \pmod{2^{128}}$$
, $\alpha_{m\mu} = u_{m\mu} 2^{-128}$, $m = 0,1,...$
 $A_{\mu} \equiv A^{\mu} \pmod{2^{128}}$

- С целью практической реализации распределенного статистического моделирования на кластере НКС-30Т ЦКП ССКЦ СО РАН с МРР архитектурой применялась программная библиотека РАRMONC¹.
- PARMONC позволяет быстро распараллелить «последовательное» статистическое моделирование **для практически неограниченного числа ядер**; распределение вычислительной нагрузки по процессорным ядрам, сбор результатов и контроль статистической погрешности делается автоматически.

¹ Марченко М.А. Страница библиотеки PARMONC на сайте ЦКП ССКЦ СО РАН:

http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.htm

Особенности счета на кластере с МРР архитектурой

- В случае большого числа частиц в лавине ядра сохраняют «избыточные» частицы на диск для дальнейшей обработки.
- На каждом узле можно запускать MPI-процессов меньше, чем число ядер. В таком случае ядра одного узла могут обмениваться «избыточными» частицами через общую память, а при необходимости сохранять их на диск для дальнейшей обработки.

Но в таком случае падает эффективность – возможность получить заданное число реализаций за заданное время.

Расчеты на кластере НКС-30Т:

- Использовалось до нескольких сотен вычислительных ядер.
- На каждом ядре для моделирования реализаций было доступно до 8 Гб оперативной памяти.

Только использование таких массивно-параллельных вычислений позволило нам получить оценки базовых функционалов с приемлемой погрешностью.

Ускорение расчета реализаций лавины

• Методика мелкозернистого распараллеливания для рассматриваемой задачи заключается в моделировании отдельной реализации электронной лавины на одном многоядерном процессоре с общей памятью, например, на графическом сопроцессоре¹ или сопроцессоре Intel Xeon Phi.

¹ Жуковский М.Е., Усков Р.В. // Выч. методы и программирование, 2012, Т.13, №1, с. 189-197.

Параллельная реализация

Моделирование условно-независимых частей лавины частиц распределяется по ядрам сопроцессора.

Что выбрать: Intel Xeon Phi или Nvidia GPU

для мелкозернистого распараллеливания?

- Графические процессоры Nvidia GPU не использовались, т.к. «нити» («ветви» в лексикографической схеме) недостаточно легкие и нельзя добиться синхронности выполнения операций при моделировании «ветвей».
- У Intel Xeon Phi у ядер большая общая память, возможен быстрый обмен данными между ядрами, асинхронность выполнения операций на разных ядрах не снижает эффективность распараллеливания.

Особенности счета на Intel Xeon Phi

- На Intel Xeon Phi можно быстро организовать перераспределение вычислительной нагрузки между ядрами и выделить свободные ядра с целью эффективного моделирования маловероятных событий.
- В случае большого числа частиц в лавине ядра обмениваются «избыточными» частицами через общую память, при необходимости передают их на Host, который сохраняет их на диск для дальнейшей обработки.

Такой подход позволяет существенно повысить эффективность по сравнением с крупнозернистым распараллеливанием – возможность получить заданное число реализаций за заданное время.

- Поскольку узлы гибридного кластера имеют в своем составе разные вычислители (СРU-ядра и сопроцессоры), то целесообразно комбинировать крупно- и мелкозернистое распараллеливание следующим образом:
 - На каждом вычислительном узле часть CPU-ядер будет моделировать реализации согласно методике крупнозернистого распараллеливания.
 - Сопроцессоры узла (и «прикрепленные» к ним CPU-ядра) будут моделировать реализации лавины по методике мелкозернистого распараллеливания.

Расчеты на кластере МВС-10П:

- На каждом вычислительном узле использовались два 8-ми ядерных процессора Intel[®] Xeon[®] E5-2690 и два 60-ти ядерных сопроцессора Intel Xeon Phi SE10X.
- Использовался offload-режим исполнения задач на сопроцессоре.

Параллельная реализация

Сравнение двух методик распараллеливания. По горизонтальной оси -машинное время в секундах, по вертикальной оси –количество реализаций

Спасибо за внимание!