Nonliear permutations of a space over a finite field induced by linear transformations of a module over a Galois ring

Alexandr Nechaev and Alexandr Abornev

Let P = GF(q), $q = p^r$ be a field with operations \oplus, \cdot . Let us consider P as a *p*-adic digit set of a Galois ring $R = GR(q^2, p^2)$ (with operations $+, \cdot$): $P = \Gamma(R) = \{a \in R : a^q = a\}$. Then every element $a \in R$ has the *p*-adic decomposition: $a = a_0 + pa_1$, $a_s = \gamma_s(a) \in P$, $s \in \overline{0, 1}$. Here $\gamma_s \colon R \to P$, is digit function. Operation \oplus on P satisfies the equality $x \oplus y = \gamma_0(x+y)$.

For a matrix $A = (a(ij)) \in R_{m,m}$ the decomposition $A = A_0 + pA_1$, $A_s = (a_s(ij)) \in P_{m,m}$, $s \in \overline{0,1}$ is also valid. Any matrix $A \in R_{m,m}$ defines a map $\pi_A : P^{(m)} \to P^{(m)}$ by the condition

$$\forall u^{\downarrow} \in P^{(m)}: \quad \pi_A(u^{\downarrow}) = \gamma_1(Au^{\downarrow}) = (f_1(u^{\downarrow}), \dots, f_m(u^{\downarrow}))^T.$$
(1)

Here coordinate functions f_1, \ldots, f_m are polynomials over P.

For any $m \in \mathbb{N}$ there exist matrices $A \in R_{m,m}$ such that π_A is a permutation. In this case the matrix A is called *digit-permutating* (or *DP-matrix*) and the system of functions (2) is said to be *orthogonal* [1].

In the case p = 2 it is known [2] that the system of functions in (1) has a form

$$f_j(u^{\downarrow}) = \sigma_2(a_0(j1)u_1, \dots, a_0(jm)u_m) \oplus l_j(u^{\downarrow}), \quad j \in \overline{1, m},$$
(2)

where σ_2 is an elementary symmetric function of the order 2 and $l_j(u^{\downarrow})$ is a linear function. For an arbitrary orthogonal system of functions (2) there exists a DP-matrix satisfying (1).

All orthogonal systems of functions of the form (2) containing one and two nonlinear functions are described. It is proved that a quadratic function f_1 can be filled up to an orthogonal system with some system of functions $f_2, ..., f_m$ if and only if it can be filled up with some system of linear functions.

It is proved that for any Galois ring $R = \operatorname{GR}(q^2, p^2)$ every matrix $A \in R_{m,m}$ of the form

$$A = \begin{pmatrix} * & \dots & * & u_1 & pv_1 \\ * & \dots & u_2 & pv_2 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ u_{m-1} & pv_{m-1} & \dots & 0 & 0 \\ pv_m & 0 & \dots & 0 & u_m \end{pmatrix},$$
(3)

where $u_1, u_m, v_1, v_m \in \mathbb{R}^*$, is a digit-permutating matrix.

Properties of block ciphers of the form $(G\pi_A)^l$, where G is a regular permutation subgroup of the symmetric group $S(P^{(m)})$ are studied. In particular it is proved that if $R = \mathbb{Z}_{p^2}$, $p^m - 1$ is a composite number and Gis a regular representation of the group $(\mathbb{Z}_{p^m}, +)$, then a subgroup $\langle G\pi_A \rangle$ of the group $S(\mathbb{Z}_p^{(m)})$ contains alternating group for all matrices of the form (3) and for the big enough class of other permutations listed above.

Keywords: Galois ring, digit-permutating matrix, orthogonal system of quadratic forms, block cipher.

References

- [1] Lidl R., Niederreiter H., Finite Fields, Cambridge University Press, second edition, 1997.
- [2] Kuz'min A. S., Nechaev A. A. Linear recurring sequences over Galois rings. (Russian, English) Algebra and Logic 34, No.2, 87-100 (1995).