
Implementation of Streebog cryptographic
hash function family on NVIDIA CUDA

platform

Pavel A. Lebedev

Streebog [1] is a family of cryptographic hash functions intended to re-
place the current GOST R 34.11-94 national standard of Russian Federation.
The family consists of Streebog-256 and Streebog-512 hash functions with
hash value size 256 and 512 bits respectively that differ by the initial state
and what part of final state constitutes the result.

The main difference of the proposed hash function from GOST R 34.11-
94 is in compression function. Its base primitive operation denoted LPS is a
chained application of three transforms:

1. S — nonlinear bijection. Treats 512 operand bits as an array of 64
bytes and replaces each of them according to the predefined substitution
table;

2. P — byte reordering. Rearranges operand bytes as per the standard;

3. L — linear transformation. Operand is treated as 8 64-bit vectors and
each of them is replaced by the result of multiplication over GF(2) with
a predefined 64 × 64 matrix.

Only LPS and bitwise XOR of 512-bit blocks are used in compression func-
tion. Together with addition modulo 2512, these are the only operations used
in Streebog hash function.

A study of implementation details for these candidate hash functions us-
ing GPGPU computing is important to test how well-suited is the standard’s
developers choice of primitive operations and data units for modern massively
parallel architectures. NVIDIA CUDA [2] was chosen as an implementation
platform for this work for its ease of use, maturity and popularity.

Since every output of the compression function depends on its output for
the previous block, it is impossible to distribute its calculation for blocks of
the same message. This problem is not specific to Streebog and is shared

1



by most hash functions, limiting the set of applications where parallel hash
function calculation is beneficial. This leaves only one parallel distribution
design viable: a small number of threads, preferably within the same warp to
avoid synchronization, per message, processing all blocks sequentially. 512
bits of all state and block data is distributed between them in units of built-
in integer types. While this design is significantly slower in comparison to
a single CPU core, it is possible to process much more messages on a single
GPU simultaneously, given its huge quantity of hardware threads that no
multi-core/processor host system can match.

Transformation P , as specified in the standard, is essentially a transpose
operation on a 8×8 byte matrix. Precalculations can be made for the matrix
multiplication calculation to be done per byte. With these observations all
three parts of LPS transform can be neatly merged into a loop, that the
compiler effectively unrolls. Since it is impossible in this case to perform
the transformation in place, bounce buffer is used to avoid extra copying.
All predefined and precomputed values are stored in constant memory and
dynamically allocated shared memory is used to store state that cannot be
kept per-thread.

Addition modulo 2512 is implemented with carry-lookahead adder using
intra-warp parallel scan. Putting a reasonable limit on message length, ad-
dition in calculation of total message bits processed can be simplified to a
single-limb implementation. Bitwise XOR operations are trivially distributed
between threads. These operations take very little time in comparison to the
core LPS transform.

The final benchmarks compare the CPU-based implementation from [3]
with NVIDIA GeForce GTX 580 board and take into account data copy time
between CPU and GPU without memory pinning. Multiple configurations
with a different number of messages and CUDA launch configurations were
tested and the best one was chosen. With a message size of at least 16 KB,
the GPU achieves the speed of 144 MB/sec, 3.7 times faster than the CPU.

This result shows that, Streebog hash function is sufficiently suited for
GPGPU implementations. It uses few relatively straight-forward to imple-
ment primitive operations, although the most time-consuming one uses bytes
as its data unit and cannot therefore be parallelized further.

References

[1] National standard of Russian Federation. Information Technology. Cryp-
tographic data security. Hash function. — Project, 1st edition.
http://www.infotecs.ru/laws/gost/proj/gost3411.pdf

2

http://www.infotecs.ru/laws/gost/proj/gost3411.pdf


[2] NVIDIA Corporation NVIDIA CUDA C Programming Guide Version 4.1
11/18/2011
http://developer.download.nvidia.com/compute/DevZone/docs/

html/C/doc/CUDA_C_Programming_Guide.pdf

[3] Sergey Grebnev, Andrey Dmukh, Denis Dygin, Dmitry Matyukhin,
Vladimir Rudskoy and Vasily Shishkin. Asymmetric Reply to SHA-3:
Russian Hash Function Draft Standard. — Presented to CTCrypt 2012
Workshop.

3

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

