Лабораторная микротомография на монохроматичном рентгеновском излучении

<u>Асадчиков В.Е.</u>, Бузмаков А.В., Золотов Д.А., Осадчая А.С., Якимчук И.В.

asad@crys.ras.ru

Институт кристаллографии им А.В. Шубникова, Москва, Россия

Наша цель – повышение разрешения и чувствительности рентгеновских микротомографических исследований

Выбор диапазона рентгеновского

излучения

	Вода	Глюкоза	Белок	Липиды	CaC ₂ O ₄
Е(Эв)	L(мм)	L(мм)	L(мм)	L(мм)	L(мм)
5000	0,234	0,194	0,233	0,500	0,029
5500	0,313	0,260	0,311	0,670	0,038
6500	0,522	0,435	0,516	1,123	0,059
7000	0,655	0,547	0,647	1,413	0,073
8000	0,989	0,826	0,972	2,135	0,106
17500	10,162	8,246	9,406	18,924	0,983
22000	17,753	13,876	15,821	28,805	1,896
30000	30,904	22,623	26,036	40,752	4,505

Масштаб исследуемого объекта, мм

Зависимость поглощенной дозы от длины волны зондирующего излучения при размере образца 10 мм

В.Е.Асадчиков, А.В.Бузмаков, Д.А.Золотов, Р.А.Сенин, А.С.Геранин. Лабораторные рентгеновские микротомографы на монохроматичном излучении. //Кристаллография, 2010, том 55, №1, с. 167 – 176

Схема томографического эксперимента

Схема лабораторного микротомографа с разрешением на уровне 10 мкм

- 1 Рентгеновская трубка;
- 2 Монохроматор;
- 3 Исследуемый образец;
- 3 CCD детектор (2048×2048 размер пикселя 13 мкм).

V. E. Asadchikov, A. V. Buzmakov, D. A. Zolotov, R. A. Senin and A. S. Geranin // Crystallography Reports. 2010. Vol. 55. No. 1, pp. 158–167.

Томография сибирского углозуба

Томография сибирского углозуба

Схема лабораторного микротомографа с двумя асимметричными кристаллами

рентгеновская трубка; 2 – исследуемый образец;
4 – увеличивающие асимметрично срезанные кристаллы;
5 – ССО – детектор.

Senin R.A., Buzmakov A.V., Konovko A.V., Smirnov I.S., Geranin A.S., Asadchikov V.E. Gain in spatial resolution of X-ray laboratory microtomographs with enlarging X-ray optical elements // Journal of Physics: Conference Series 2009. V.186. pp.012035-012037.

Одной из актуальных задач, стоящих перед нефтедобывающей промышленностью, является повышение эффективности разработок месторождений с трудноизвлекаемыми запасами нефти.

3D реконструкция

V. Asadchikov et. al Characterization of oil nano-structures with monochromatic x-ray micro-tomography //Proceedings of SPIE. V. 8460. Pp. 8460-71.

Реконструкция томографических данных: срезы с включениями

Поглощение образца SiO₂ (длина 7,6 мм)

Region	1	2	3	4
μ, mm⁻¹	7.05	7,14	7,51	8,12

Эпифиз человека

Секреторная активность пинеалоцитов в эпифизе человека при циркадианном

■S-100 + 2 Ca

•СЕРОТОНИН

N-Ацетилтрансфераза

■S-100 + 2 Ca

•N-Ацетил-5-гидрокситриптамин

 S-100 + 2 Са
Гидроксииндол-0метилтрансфераза

■S-100 + 2 Ca ■МЕЛАТОНИН

Человеческий эпифиз в норме

Масштаб (1 ед – 100 мкм)

Пространственное распределение кальция в человеческом эпифизе при болезни Альцгеймера

Масштаб (1 ед – 100 мкм)

Пространственное распределение кальция в человеческом эпифизе при шизофрении

Человеческий эпифиз в норме

Unregistered HyperCam 2

Фокин Е.А., Савельев С.В., Гулимова В.И., Асадчиков В.Е., Сенин Р.А., Бузмаков А.В. Морфогенез и пространственная организация конкрементов эпифиза человека при болезни Альцгеймера, шизофрении и алкоголизме. Архив патологии, 2006, Т.68, №5, С.20-22.

Гистологический срез хвоста геккона

V.I. Gulimova, V.B. Nikitin, V.E. Asadchikov et. al "Effect of 16-day spaceflight on the morphology of thick-toed geckos (Pachydactylus turnery Gray, 1846)." // Journal of Gravitational Physiology, 2006, V.13, N.1, P. 197-200.

Человеческий эпифиз в норме

Unregistered HyperCam 2

Центральная часть позвоночника геккона

Gekko mandible

Schematic diagram of X-ray laboratory tomograph with resolution at the level of 10µm

Reconstruction of gecko's teeth with 2x magnification.

Schemtaic diagram of X-ray laboratory microtomograph with bubble lens

1 –X-ray tube with monochromator, 2 - the sample on the goniometer table, 3 – diaphragm, 4 - the bubble lens on the holder, 5 – CCD-detector

How this lens works

1 – diaphragm, 2 – capillar, 3 – polymer

Reconstruction of gecko's teeth with 14x magnification.

Schematic diagram of X-ray laboratory tomograph with 2 asymmetrical crystals.

Исследования на разных длинах волн

11 keV

5.4 keV

V. Asadchikov et. al Comparison of the Data of X-Ray Microtomography-and Fluorescence Analysis in the Study of Bone-Tissue Structure //Crystallography Reports, 2012, Vol. 57, No. 5, pp. 700–707.

Элементный анализ с помощью электронного микроскопа

XRF анализ

В.Е. Асадчиков, Р.А. Сенин, А.Е. Благов и др. // Кристаллография. 2012. т.57. №5. с.782-790

Лабораторная рентгеновская топо-томография

- 1 рентгеновская трубка (МоК $_{\alpha 1}$, λ = 0.71 Å);
- 2 коллиматор;
- 3 кристалл;
- 3 ССD детектор (2048×2048 размер пикселя 13 мкм).

Исследование кристалла LiF в монохроматичном пучке

Дифракционная томография

D.A. Zolotov, A.V. Buzmakov, V.E. Asadchikov et al. Crystallography Reports. 2011. V. 56. No. 3. pp. 393-396

Исследование кристалла LiF в полихроматическом пучке

1 мм

диффракционная проекция топография Ланга

реконструкция

Исследования природного алмаза

Спасибо за внимание!

Biological sample

Gekko Pachydactylus bibroni

V.I. Gulimova, V.B. Nikitin, V.E. Asadchikov et. al "Effect of 16-day spaceflight on the morphology of thick-toed geckos (Pachydactylus turnery Gray, 1846)." // Journal of Gravitational Physiology, 2006, V.13, N.1, P. 197-200.

Trabecular bone structure

The central part of geckos backbone

Sample on different wavelengths

E=5.4 keV

Absorption proportion

2/1

E=13.0 keV

Absorption proportion 3/1

Tomographic reconstructions

Sample on different wavelengths

E=5.4 keV

E=13.0 keV