Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора

Рыжиков Н.И. Московский Физико-Технический Институт Московский научно-исследовательский центр технической компании Шлюмберже

- 1. Введение
- 2. Постановка задачи
- 2. Используемый метод
- 3. Примеры применения метода
- 4. Модификация метода для случая слабоконтрастных компонетнов бурового раствора
- 5. Заключение

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Schlumberger Confidential

Повреждение пласта буровым раствором

Назначение бурового раствора (б/р):

- Вынос шлама
- Противодавление
- Охлаждение буровой коронки

Основные исследуемые компоненты:

- Глины
- Полимеры
- Взвешенные частицы (кальциты, бариты и пр.)

Результат проникновения компонентов б/р в пористую среду:

- Снижение пористости
- Снижение проницаемости

Основные механизмы влияния компонентов б/р на свойства пористой среды:

- Внешняя корка
- Внутренняя корка (проникшие частицы)
- Проникновение фильтрата

Экспериментальное оборудование:

Фильтрационная установка

Динамический фильтр-пресс

Повреждение пороры мелкими карбонатными частицами d=4им (SPE 54762) Schlumberger

Постановка задачи

Практическая значимость:

- Численная характеризация повреждения пласта
- Калибровка моделей повреждения пласта

Задача исследования:

Определение профиля концентраций проникшей примеси для образцов пористой среды после фильтрационного эксперимента

Использовалось:

- Фильтрационные эксперименты с модельными буровыми растворами (бентонит, кальциты, полимер)
- Искусственные и природные образцы
- Рентгеновская компьютерная микротомография (Skyscan 1172)

Подготовка образцов для томографии

Для получени достаточного разрешения (~ 2.5 им) из образцов высверливаются мини-керны:

В зависимости от конкретного случая образцы сканируются:

- в насыщенном состоянии до фильтрации
- в насыщенном состоянии после фильтрации
- сухие образцы до фильтрации
- сухие образцы после фильтрации

Пример гистограммы для трехкомпонентного образца

Schlumberger

Метод расчета профилей концетрации компонент б\р

- Нормализованная гистограмма функция плотности вероятности(ФПВ) распределения серого на сечении
- Форма ФПВ для области сечения, содержащей один материал, соответсвует нормальному распределению (гауссиану)
- ФПВ всего сечения можно представить в виде суперпозиции гауссианов, соответствующих отдельным материалам

$$H(z) = \sum_{i=1}^{n} A_i \exp\left(-\left(\frac{B_i - z}{C_i}\right)^2\right)$$

где z – градации серого, H(z) – нормализованная гистограмма сечения, A,B,C - коэффициенты гауссианов, *n* - число материалов на гистограмме

Аппроксимация ФПВ отдельного материала (воздуха) с помощью Гауссиана

Модель ФПВ для переходной зоны

- 1. Делается предположение, что значение серости в переходной зоне является средним арифметическим значений серого в граничных точках
- 2. Параметры ФПВ переходной зоны зависят от параметров ФПВ граничащих веществ
- 3. Весовой коэффициент при ФПВ переходной зоны зависит общей длины границы переходной области

Тогда форму ФПВ можно расчитать так:

$$z_{i} = \frac{(m+1-i)z_{1} + iz_{2}}{m+1}$$

$$\mu_{i} = \frac{(m+1-i)\mu_{1} + i\mu_{2}}{m+1}, \sigma_{i}^{2} = \frac{(m+1-i)\sigma_{1}^{2} + i\sigma_{2}^{2}}{m+1}$$

$$p(z_{i}) = \frac{1}{\sigma_{i}\sqrt{2\pi}} \exp\left(-\frac{(z-\mu_{i})^{2}}{2\sigma_{i}^{2}}\right)$$

$$p(z_{transit}) = \sum_{i}^{n} p(z_{i})$$

т – ширина переходной зоны в пикселях

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Пример переходной зоны на сечении

Минимизируемая функция

• Учитывая переходную зону, конечная функция для минимизации принимает вид:

$$\sum_{j=1}^{m} \left| H(z_j) - \sum_{i=1}^{n} G(z_j, A_i, B_i, C_i) - \sum_{i_{trans}=1}^{n(n-1)} \sum_{m} G(z_j, A_{i_{trans}}, B_{i_{trans}}, C_{i_{trans}}) \right| \to 0$$

$$G(x, A, B, C) = A \exp\left(-\left(\frac{x - B}{C}\right)^2\right)$$

Здесь, *m* – ширина переходной зоны в пикселях , *zj* – i-й диапазон серого в гистограмме, *A,B,C* – параметры гауссианов, *i* – индекс материала, *itrans* – индекс переходной зоны

. 2)

• Общая площадь материала Sm в сечении:

$$S_{i} = S_{G_{i}} + \frac{1}{2} \sum_{j \neq i}^{n} S_{tr_{ji}}; S_{G_{i}} = \int A_{i} \exp\left(-\left(\frac{x - B_{i}}{C_{i}}\right)^{2}\right) dx = A_{i}C_{i}\sqrt{2\pi}$$

- Общее число управляющих параметров минимизации N = [3n + n(n-1)/2], где n общее число материалов в сечении. Для оптимитизации применялась процедура Shuffle Complex Evolution.
- При расчете профиля использовалась последовательная обработка сечений. В качестве первого приближения для i-ого сечения использовались результаты оптиматизации для (i-1)ого.

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Проверка метода: профилирование образца с тремя минералами

Сравнение профилей, полученых методом анализа гистограм и с помощью специального обычного метода установки порога

Schlumberger

Искусственный образец после фильтрации глины

- Повреждение на входе в образец
- Увеличение концентрации глины с глубиной в неповрежденной зоне (объясняется особенностями фильтрационного эксперимента)

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Керамический диск после фильтрации б/р с частицами CaCO3

Разрез томографии вдоль образца и

До фильтрации:

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Schlumberger Confidentia

Природный образец после фильтрации б/р с частицами CaCO3

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Использование значения серости материала

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

idential

Фильтр Кувахары (Kuwahara Filter)

Изменение формы гистограммы после использования фильтра

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Schlumberger

Schlumberger Confidentia

Пример анализа гистограммы после фильтрации. Искусственный образец

Искусственный образец с неконтрастными компонентами б/р

Рыжиков Н. И., «Использование рентгеновской компьютерной микротомографии для характеризации механизмов повреждения проницаемости нефте/газосодержащих пластов компонентами бурового раствора», Казань, 6.12.2012

Schlumberger Confidential

Заключение

- Предложен метод анализа гистограмм распределения серости, полученных с использованием рентгеновской микротомографии, для профилирования объемных долей фаз в образцах пористых сред
- Метод опробован на серии образцов горных пород
- Для выделения слабоконтрастных компонент разработана модификация метода с применением фильтра Кувахары
- Утверждены 2 патентные заявки, включающие описанный метод анализа томографии

