
Intel® Software Tools Overview
(covering all aspects of Software development)(covering all aspects of Software development)

Anton Pegushin and Gennady Fedorov

Software and Solutions Group

Date, Dec. 8th, 2008

In place of Agenda

• Intel® Cluster Tools

• Intel® Compilers and Debugger

• Intel® Threading Analysis Tools

− Thread Checker

− Thread Profiler

− Threading Building Blocks

• Performance Analysis Tools

2

Software and Services Group

2

• Performance Analysis Tools

− Intel® VTune Performance Analyzer

− Performance Tuning Utility

− Intel® Parallel Studio

• Performance Libraries

−Math Kernel Library

− Intel® Performance Primitives

Use the Same Toolset for 32/64 bit
on Windows*, Linux* and Mac OS*
X

3

Software and Services Group

3

From Servers to Mobile / Wireless Computing, Intel® Software Development
Products Enable Application Development Across Intel® Platforms

Documentation, articles, discussion forums and
blogs are now centralized and localized

• Intel® Software Products discussion forums and blogs

− Welcomes a very large number of bloggers from Intel.

− Forums are very active with engineers from various communities present

− English

> http://software.intel.com/en-us/forums

> http://software.intel.com/en-us/blogs/

− Russian

> http://softwarecommunity-rus.intel.com/isn/Community/ru-RU/Forums/

> http://softwareblogs-rus.intel.com/

4

Software and Services Group

4

> http://softwareblogs-rus.intel.com/

• Intel® Knowledge Base

− Large number of up-to-date articles already available. Many more to come.

− Enhanced “Search” option allows you to browse by category, type or search for a
key word

− English

> http://software.intel.com/en-us/articles/all/1

• Intel® “What if software were like this”

− English

> http://software.intel.com/en-us/whatif

Intel® MPI Library 3.2 Benefits

A high performance universal MPI solution enabling A high performance universal MPI solution enabling A high performance universal MPI solution enabling A high performance universal MPI solution enabling

applications to run across multiple network fabricsapplications to run across multiple network fabricsapplications to run across multiple network fabricsapplications to run across multiple network fabrics

• High performance MPI-2 implementation

- Automatic performance tuner

- New collective operation’s algorithms

- New switches and environment variables to control and
enhance application performance

5

Software and Services Group

5

enhance application performance

• Linux* and Windows* support

• Interconnect independence

• Smart fabric selection

• MT safety

• Close integration with the Intel and 3rd party development
tools

Customers select
interconnect at runtime

AA

BB

CC

DD

11

22

33

Applications

Fabrics

Intel® MPI atop
Abstract Fabric

Value Proposition

6

Software and Services Group

6

ISVs see &
support single
interconnect

DD

EE

FF

33

44

IHVs create DAPL
providers and fabric

drivers

Intel® MPI 3.2 tuning tips

• Configure your cluster and the application for your cluster
− Run auto-tuning utility and build your applications optimized

• Choose best available communication mechanism

− Fast fabric, optimal process layout (through pinning)

− Enable mixed mode for threaded applications

• Use lightweight statistics and know your switches!
− Adjust eager/rendezvous protocol threshold

7

Software and Services Group

7

− Adjust eager/rendezvous protocol threshold

> I_MPI_EAGER_THRESHOLD

− Choose the best collective algorithms

> I_MPI_ADJUST_<opname>

− Know your switches/environment variables

> I_MPI_DYNAMIC_CONNECTION, I_MPI_RDMA_SCALABLE_PROGRESS,
I_MPI_WAIT_MODE, I_MPI_INTRANODE_SHMEM_BYPASS,
I_MPI_CACHE_BYPASS_THRESHOLDS, I_MPI_SPIN_COUNT,
I_MPI_RDMA_BUFFER_NUM

Intel® Trace Analyzer and Collector

Timeline of
initial

application run

Shorter RED bars
means less MPI

traffic and
increased

performance

Timeline of
optimized

application run

Works on systems
from 2 processes to

more than a thousand
processes

8

Software and Services Group

8

Comparison of
function and

process profile
data

Network usage
profile data for
MPI messages

performance

Find programming and
environment errors

• Solves two problems:

− Find programming mistakes in a MPI application which need to be fixed by
the developer

MPI_Send()

MPI_Barrier() MPI_Barrier()

MPI_Recv()

MPI_Send()

MPI_Recv()

MPI_Send()

MPI_Recv()

9

Software and Services Group

9

the developer

−Detect errors in the execution environment

• Two aspects

− Error detection – done automatically by the tool

− Error analysis – done manually by the developer based on:

• Information provided about the error

• Knowledge of source code, system, etc.

Use the Intel® Trace Analyzer GUI
•Enable correctness checking info to be added to the trace file:

−Set VT_CHECK_TRACING env variable:

$ mpiexec –check_mpi –genv VT_CHECK_TRACING on –n 4 ./a.out

More details on “Errors“

10

Software and Services Group

10

MPI statistics

“Run-time Errors“

“Warnings“

More details on “Warnings“

Intel® Compiler Optimization
Capabilities

•General optimizations through switches and specific Intel
architecture optimizations

− -O1, -O2, -O3 and –axP

• Interprocedural Optimization (IPO)

• Profile guided optimization (PGO)

−Three-steps process

11

Software and Services Group

11

−Three-steps process

•Auto parallelization with –parallel
•OpenMP directives support

−pragma-based, -openmp compiler switch

•Support for Intel Threading Analysis Tools
− -tcheck and -tprofile

IDB: Debugging Multi-threaded Applications

•Thread Control
• Flexible Thread Execution Models

− Concept of “focus” thread set for next/step/finish

− Freezing and thawing of individual threads

− Can detach threads from debug control

• Thread Grouping

− Smart default groupings by debugger (All, Team,
Lockstep)

− Explicit grouping by user if required

• Thread Group aware breakpoints

OpenMP* Support

Dedicated OpenMP Info Windows

• Threads

• Teams

• Tasks

• Task spawn trees

• Barriers*

• Taskwaits*

• Locks

Serial execution of a parallel region

12

Software and Services Group

12

•

− Break when any member of the trigger group hit

− Can stop a specific thread set only

• Thread Synchronizing Breakpoint “syncpoint”

− Stop when all threads in the trigger group reach it

− Similar to “barriers” in parallel programming

User benefits:

� Provide outstanding execution control for multithreaded applications without
added complexity for serial code debugging.

� Provide serialization of parallel region and detailed information on OpenMP
constructs- The only debugger capable of doing this.

Serial execution of a parallel region
at debug time*

Technology

• Uses special OpenMP RTL

13

Software and Services Group

13

Closer look at the GUI

Run control:

Threads, Callstack, Breakpoint

OpenMP support

Run / Continue

Step into

14

Software and Services Group

14

Threads, Callstack, Breakpoint

Assembly, CPU registers, SIMD registers, Vector

evaluation

Step into

Step over

Run until caller

Run until ….

Asm instr. Step into

Asm instr. Step over

Stop

Run / Restart

Thread Control

15

Software and Services Group

15

With the right mouse click on a selected thread you can ‘control it’:

Frozen – it will no longer execute until explicitly ‘Thawed’

Thawed – release a thread which was earlier frozen

Uninterrupted – this thread will run until it finished and no interrupt will stop it

Thread Specific Breakpoint
Handling
• Supporting thread sync points instead of only Code Breakpoints

• Apply breakpoint to any number of threads

• Define thread sets to apply breakpoints to

• Complex data breakpoints, thread filters and skip counts

16

Software and Services Group

16

SIMD Register view

The Intel® Debugger features a new SIMD SSE register window based Vector
Evaluations Window. It supports evaluation of arbitrary length expressions.
This allows the display of variables used for SIMD operations in the same way
they are treated by the hardware in the related registers and provides better
in depth insight into data parallelization and vectorization.

17

Software and Services Group

17

Analysis flow of Intel® Thread
Checker and Thread Profiler

Intel® Thread Checker/Profiler

VTune™ Performance Analyzer

+DLLs (Instrumented)

Binary

Instrumentation
Application

Application

(Instrumented)

Runtime

18

Software and Services Group

18

+DLLs (Instrumented)Runtime

Data

Collector

results file:

threadchecker.thr

threadprofiler.tp

Threading Analysis Features

•Monitor System and User-specified APIs

−Thread and Process Control APIs

>Create, Terminate, Suspend, Resume, Exit

−Synchronization APIs

>Mutexes, Critical Sections, Locks, Semaphores, Thread Pools,
Timers, Messages, APCs, Events

−Blocking APIs

19

Software and Services Group

19

−Blocking APIs

>Sleeping, Timeouts

>I/O: Files, Pipes, Ports, Messages, Network, Sockets

>User I/O: Standard, GUI, Dialog Boxes

•Analysis is data driven
−What’s not executed is not being analyzed

Intel® Threading Analysis Tools

T1 T2 T3 T4
Two segments S and
S´ are parallel, if S <
S´ and S´ < S are

both false.

Examples:

S11 and S21

S32

S22

S31

S11

S41

S21

S23

20

Software and Services Group

20

11 21

S11 and S31

S12 and S32

S22 and S31.

S34

S33

S24

S13

S12

S43

S42

S35

S23

S25

“Demo”

21

Software and Services Group

21

“Demo”

Allows user to view the

22

Software and Services Group

22

Allows user to view the
diagnostics while Thread

Checker is running

“Demo”

23

Software and Services Group

23

“Demo”

24

Software and Services Group

24

“Demo”

Call stack as a
pull-down

25

Software and Services Group

25

pull-down
menu

“Demo”

Context : function/parallel region

Definition : variable declaration

26

Software and Services Group

26

“Demo”

27

Software and Services Group

27

Dealing with high count of
diagnostics of Intel® Thread Checker

Sorting and Grouping

28

Software and Services Group

28

Filtering

Intel® Thread Checker Command
Line

29

Software and Services Group

29

Intel® Thread Checker Command
Line

HTML output

30

Software and Services Group

30

Critical path data

Demo Review

Let’s use the
double-click
usage model

31

Software and Services Group

31

Critical path data
is enabled by
default. Uncheck
the box.

There’s still quite a bit
of time during which the
application has 1 or 2
threads active

Let’s see why
we have CL=1.

Double click on
CL:1 bar.

Demo Review

Lists the
instances of that
object in the
source

32

Software and Services Group

32

Demo Review

Double-click on
the object with
most wait time
(left most)

33

Software and Services Group

33

Demo Review

Double-click on
the source

occurrence with
the most wait

time

34

Software and Services Group

34

time

Demo Review

35

Software and Services Group

35

Grouping & Filtering

•Grouping by a specific “item” (i.e., concurrency, threads, etc)

•Filtering in or out a particular “item” (i.e., concurrency, object,
etc)

36

Software and Services Group

36

Critical path analysis:
System Utilization
•Examines processor utilization to determine concurrency level of the
application

•Concurrency is the number of active threads

Categorization shown for a system configuration with 2 processors

Idle Serial Fully-utilizedUnder-utilized Over-utilized

37

Software and Services Group

37

Concurrency Level
0

15

5

10

T
im

e

0

Thread 3

Thread 2

Thread 1

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

Acquire lock L Release L

Wait for L

Wait for Threads

2 & 3

Threads

2 & 3 Done

Wait for an
external

event

Acquire L Release L

Wait for L Acquire L Release L

Issues patters: interpreting the
results

38

Software and Services Group

38

Problem
Gaining performance from multicore requires parallel
programming

Native threads? - Even a simple “parallel for” is tricky for a non-
expert to write well with threads

OpenMP? – What about heavy C++ code with user-defined types

Two aspects to parallel programming

• Correctness: avoiding race conditions and deadlock

39

Software and Services Group

39

• Correctness: avoiding race conditions and deadlock

• Performance: efficient use of resources

> Hardware threads (match parallelism to hardware threads)

> Memory bandwidth (reuse cache)

Concurrent Containers

concurrent_hash_map

concurrent_queue

concurrent_vector

Miscellaneous

Generic Parallel Algorithms
parallel_for

parallel_reduce

parallel_do

pipeline

parallel_sort

parallel_scan

Task scheduler
task

Intel® Threading Building Blocks

40

Software and Services Group

40

Miscellaneous
tick_count

task

task_scheduler_init

task_scheduler_observer

Synchronization Primitives
atomic, mutex, recursive_mutex

spin_mutex, spin_rw_mutex

queuing_mutex, queuing_rw_mutex

Memory Allocation
tbb_allocator; cache_aligned_allocator; scalable_allocator

Threads

tbb_thread

Parallel algorithm usage example
#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h“

using namespace tbb;

class ChangeArray{

int* array;

public:

ChangeArray (int* a): array(a) {}

void operator()(const blocked_range<int>& r) const{

for (int i=r.begin(); i!=r.end(); i++){

Foo (array[i]);

}

}

};

ChangeArray class defines

a for-loop body for parallel_for

blocked_range – TBB template

representing 1D iteration space

As usual with C++ function

objects the main work

is done inside operator()

41

Software and Services Group

41

};

void ChangeArrayParallel (int* a, int n)

{

parallel_for (blocked_range<int>(0, n), ChangeArray(a), auto_partitioner());

}

int main (){

task_scheduler_init init;

int A[N];

// initialize array here…

ChangeArrayParallel (A, N);

return 0;

}

is done inside operator()

A call to a template function

parallel_for<Range, Body>:

with arguments

Range � blocked_range

Body � ChangeArray

[Data, Data+N)

[Data, Data+N/2)

[Data+N/2, Data+N)

parallel_for(Range(Data), Body(), Partitioner());

42

Software and Services Group

42

tasks available to
thieves

[Data, Data+N/k)

[Data, Data+GrainSize)

Two Execution Orders

Depth First

(stack)

Breadth First

(queue)

43

Software and Services Group

43

Small space

Excellent cache locality

No parallelism

Large space

Poor cache locality

Maximum parallelism

Work Dept First; Steal Breadth First

L2

Best choice for theft!

•big piece of work
•data far from victim’s hot data.

Second best choice.

44

Software and Services Group

44

L1

L2

victim thread

C++0x lambda functions support

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h“

using namespace tbb;

void ChangeArrayParallel (int* a, int n)

{

parallel_for (blocked_range<int>(0, n),

[=](const blocked_range<int>& r) {

for (int i=r.begin(); i!=r.end(); i++) {

Foo (a[i]);

}

Capture variables by value

from surrounding scope as

opposed to [&] – capturing by

reference

parallel_for example will transform into:

45

Software and Services Group

45

}

}),

auto_partitioner());

}

int main (){

task_scheduler_init init;

int A[N];

// initialize array here…

ChangeArrayParallel (A, N);

return 0;

}

Using lambda functions implement

MyBody::operator() right inside

the call to parallel_for().

VTune™ Performance Analyzer

•Helps you identify performance bottlenecks with
advanced profiling technologies:

−Sampling Profiling
Provides an accurate representation of your software's
actual performance with little impact on program execution
(typically < 1%)

46

Software and Services Group

46

(typically < 1%)

−Call Graph Profiling
Offers a pictorial view of program flow to help you quickly
identify critical functions and call sequences, gaining a high-
level, algorithmic view of program execution

Sampling: The Method of Finding Hotspots

•The Event-based sampling collector

− Periodically interrupts the processor

>Triggered by the occurrence of a certain number of microarchitectural events

>Uses microprocessor’s PMU (Performance Monitor Unit) to generate an interrupt
to capture samples

>Identify system-wide software performance problems caused by processor
events, such as Cache Misses, Branch Mispredictions, Instructions Retired, etc.

>You can determine which process, thread, module, function, and source line in
your program generated the most processor events, and whether any of those
events impacted the performance of your program

47

Software and Services Group

47

>The recommendation is 1000 samples per second per processor

− Collects the execution context

>Execution address in memory (CS:IP)

>Operating system process and thread ID

>Executable module loaded at that address

•If you have symbols for the module, post-processing can identify the function or
method at the memory address

•Line numbers from the symbol file can direct you to the relevant line of source
code

Sampling: Process view

48

Software and Services Group

48

Sampling: Source code view

49

Software and Services Group

49

Call graph: Application workflow

The red lines show the
critical path. The critical
path is the most time-

consuming call path. It is
based on total time.

The red lines show the
critical path. The critical
path is the most time-

consuming call path. It is
based on total time.

50

Software and Services Group

50

Bright orange nodes
indicate functions with
the highest self time.

Bright orange nodes
indicate functions with
the highest self time.

Intel® PTU Overview

•Eclipse* based, modular tool

−Underlying command line structure

−Virtually identical on Windows* and Linux*

•Available at: http://whatif.intel.com

• Targeting Expert Users

51

Software and Services Group

51

• Targeting Expert Users

−Internal tool used at Intel® Corp.

•Preview of new design and usage

•Focus on Features

Basic Sampling on a Matrix Multiply

52

Software and Services Group

52

Three views at once

53

Software and Services Group

53

Expanding the “arrow” we see the 2 threads access
the line at Different Offsets…This is False Sharing

54

Software and Services Group

54

•Years of parallelism expertise in
HPC is now available for
PC/laptop applications

•Four new products help Windows
developers with parallelism

•All products inter-operate with

Intel® Parallel Studio software products
The most comprehensive parallel programming tool kit

specifically for C/C++ Windows developers

55

Software and Services Group

55

•All products inter-operate with
and extend Microsoft Visual
Studio

•All products are ready to support
common Concurrency Runtime
(Microsoft future)

•All products provide multicore
performance today

−and forward scaling to manycore

Intel® Parallel Studio
Helps programmers throughout the development

cycle

56

Software and Services Group

56

Design Code Debug Tune

Software products that solve the

greatest parallelism challenges developers face

Intel® Parallel Advisor

•Advisor is a new category of development product

•Advisor helps understand where to add parallelism to existing
source code.

−How to implement threads and provide suggestions areas

−Spotlights where parallelism can be added

−Helps make better design decisions

Insight into where parallelism benefits existing source code

57

Software and Services Group

57

−Helps make better design decisions

>Shows consequences of decisions – identifies conflicts

>Suggest ways to resolve conflicts

•Microsoft* Visual Studio* Integration

Beta mid-2009

Product late 2009

Intel® Parallel Composer

•Simplifies threading for improved developer productivity

−“Think Parallel” and code it without low-level thread management

•Enables Microsoft* Visual Studio* developers to add
parallelism to applications

Incorporate parallelism quickly
with a C/C++ compiler and comprehensive threaded libraries

• Intel® Threading Building Blocks

• Intel® Integrated Performance

• Parallel debugging functionality

• Innovative “Parallel Lint” helps

58

Software and Services Group

58

• Intel® Integrated Performance
Primitives (Intel® IPP)

• Pre-threaded domain-specific libraries

• Support for lambda functions

• Data parallel arrays

• Simple concurrency functions

• OpenMP* 3.0

• Parallel valarray Auto-vectorization,
auto-parallelization

• Innovative “Parallel Lint” helps
detect parallel errors at compile

time

• Spawn/par

• Parallel debug plug-in

Beta Q4 2008

Product mid-2009

Intel® Parallel Inspector

•Inspector sets a “must use” standard for shipping stable and
reliable threaded applications – a proactive “bug finder.”

•Does not require that application uses a single particular model of
parallelism to get safety.

•Unlike traditional debuggers, Inspector detects hard-to-find
threading errors in multi-threaded C/C++ Windows applications.

Help ensure application reliability with Proactive “bug finder” for
all parallel programming models

59

Software and Services Group

59

threading errors in multi-threaded C/C++ Windows applications.

−Root-cause analysis for crash-causing defects such as data races and
deadlocks

−Automatically monitoring the runtime behavior of the code to ensure
application reliability

−Critical for nondeterministic (the execution sequence can change from
run to run) errors that are difficult to reproduce

−Based on Intel® Thread Checker technology, plus more!

•Microsoft* Visual Studio* Integration

Intel® Parallel Amplifier

•Amplifier makes it simple to quickly find multi-core performance
bottlenecks, for everyone – not just “experts”

−Provides quick access to scaling information for faster and improved
decision-making

−No need to know the processor architecture or assembly code

−Takes away the guesswork by accurately measuring programs

Program like an expert.
Easy to use performance analyzer finds bottlenecks quickly

60

Software and Services Group

60

−Takes away the guesswork by accurately measuring programs
performance behavior

−Designed with significant user input – Intel application engineers,
customers, and Whatif.intel.com community (PTU)

−Makes Intel® Thread Profiler and Intel® VTune Performance Analyzer
technology much more accessible

•Microsoft* Visual Studio* Integration

