И.К. Гайнуллин Физический факультет МГУ

Трехмерное моделирование зарядового обмена между ионными пучками и поверхностью металлов

Описание зарядового обмена на атомарном уровне

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- Моделирование экспериментальных данных
- > Заключение

- > Ион, поверхность, один активный электрон
- Туннелирование электрона с иона на поверхность описывается нестационарным уравнением Шредингера

Исследуемые системы

- Уоны/атомы с одним активным электроном (H⁰/H⁻, Li⁰/Li⁺, Na⁺, K⁺)
- Металлы в приближении свободных
 электронов (модель «желе»)
- Металлы с запрещенной зоной (projected band gap)
- Наносистемы (тонкие пленки, островковые пленки)

Модель желе – неограниченное распространение электрона - (110)

P.J. Jennings, R.O. Jones and M. Weinert, Phys. Rev. B. 37, 6113 (1988).

Projected band gap – формирование мнимых и поверхностных состояний - (100), (111)

E.V. Chulkov, V.M. Silkin and P.M. Echenique, Surf. Sci. 437, 330 (1999).

Подходы к моделированию 3D задач

- ▶ Объем области моделирования 20х20х50 А³
- > Дискретная сетка 10⁷-10⁹ точек
- » Двумерная задача в координатах (z,x)
- > Адиабатическое приближение
 - > Двумерная статическая задача (z, ρ) -> Γ(Z)
 - > Кинетическое уравнение $dP/dt = -P(t)*\Gamma(Z)$
- Включение трансляционного фактора
 - > Двумерная динамическая задача (z, ρ) -> σ(θ,z)
 > Γ(z) = 2π∫dθ⋅sinθ∫dφ⋅σ(θ,z)⋅f(E_f (k+v_{||})²/2)

Необъясненные эксперименты

Figure 2. Li neutral fraction (Φ°) obtained in scattering on Cu(111), Ag(111) and Au(111) surfaces as a function of exit energy. The lines correspond to a calculation within the jellium model (see text).

Необъясненные эксперименты

Fig. 5 Left panel: H⁻ fraction as function of parallel velocity for scattering from Cu(110) surface with a

normal velocity component of $0.02 a_0 E_h h^{-1}$. Calculations within the jellium model, (\bigcirc) and (\bigcirc) experimental data for azimuthal settings close to $\langle 001 \rangle$ and $\langle 1\overline{10} \rangle$ directions, respectively. Right panel: Same as left panel, but for Cu(111) surface. (\longrightarrow) Calculations within the jellium model, (\bigcirc) and (\bigcirc) experimental data for

azimuthal settings close to $\langle 1\overline{10} \rangle$ and $\langle 1\overline{21} \rangle$ directions, respectively.

T. Hetch, H. Winter, A.G. Borisov, J.P. Gauyacq and A.K. Kazansky, Faraday Discuss. 117, 27 (2000).

- > Состояние проблемы
- > Методы и подходы
 - » Численное решение TDSE
- Трехмерные эффекты зарядового обмена
- Моделирование экспериментальных данных
- > Заключение

Численная схема

$$i\frac{d\psi(\vec{r},t)}{dt} = H(t)\psi(\vec{r},t)$$
$$H = -\frac{\Delta}{2} - U(\vec{r},t) \qquad \phi^{n+1} = -2i\tau \left[H\phi^n\right] + \phi^{n-1}$$

$$\phi^{0} = \varphi + \frac{i}{2} \left[H(\frac{\tau}{2})\varphi \right] \quad \phi^{1} = \varphi - \frac{i}{2} \left[H(\frac{\tau}{2})\varphi \right]$$

$$\phi^{n+1} = -2i\tau e^{-i\tau V} \left[H\phi^{n}\right] + e^{-2i\tau V}\phi^{n-1}$$

Gordon A., Kärtner F.X., Rohringer N., Santra R. // Phys. Rev. A, 2006. V. 73. 042505

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. Comput. Phys. 94, 59 (1991)

Параллельная реализация

- » Архитектура MPI
- > Оптимизация доступа к памяти
- Асинхронная передача данных (одновременный расчет основной области и обмен граничными значениями)
- > Выравнивание расчетной сетки
- Минимизация передачи данных (нормировка волновой функции и вычисление статистики на GPU)
- > Хранение значений в float, промежуточные расчеты в double

I.K. Gainullin and M.A. Sonkin, Comp. Phys. Comm. 188, 68 (2015); I.K. Gainullin, Comp. Phys. Comm. 210, 72 (2017).

I.K. Gainullin and M.A. Sonkin, Comp. Phys. Comm. 188, 68 (2015); I.K. Gainullin, Comp. Phys. Comm. 210, 72 (2017).

15

Высокая производительность

TDSE Solver	Calculations facilities, used number of processing units and its price	Problem size, 10 ⁹ points	Number of steps	Calculatio n time.	Time for 1 step.	Normalized calculation
		1 1 1	· · · · · ·	sec.	sec.	time, sec.
TDSE GPU Solver (cylindrical coordinates)	GSRV MSU,	0.0108	1000	4.7	0,0047	0.17
	1 Tesla K20m * 2700 USD					
TDSE GPU Solver	Lomonosov MSU,	1	1000	59	0,0590	1.51
	16 Tesla M2090 * 1600 USD					
TDSE GPU Solver	GSRV MSU,	0.016	1000	8.7	0,0087	1.47
	1 Tesla K20m * 2700 USD					
CPU version of TDSE Solver	GSRV MSU,	0.125	1000	800	0,8000	9.60
(this article, the numerical scheme equal to	1 Xeon E5-2670 8C * 1500 USD [49]					
GPU version)						
YM. Lee, JS. Wu, TF. Jiang, YS.	Taiwan Center for HPC,	0.0025	400	9,5	0,0238	5.47
Chen, Phys. Rev. A 77 (2008) 013414	128 Itanium-2, 1C, 1.5 GHz					
	* 900 USD					
YM. Lee, JS. Wu, TF. Jiang, YS.	Taiwan Center for HPC,	0.007	100000	45000	0,4500	9.26
Chen, Phys. Rev. A 77 (2008) 013414	32 Itanium-2, 1C, 1.5 GHz					
	* 900 USD					
S.X. Hu, L.A. Collins, B.I. Schneider, Phys.	Coyote supercomputer	3	8264	54000	6,5340	5.23
Rev. A 80 (2009) 023426	480 Opteron 2.6 GHz, Infiniband					
	* 1000 USD					
B.I. Schneider, L.A. Collins, S.X. Hu, Phys.	LANL QSC,	0.027	1	0.46	0,4600	7.09
Rev. E 73 (2006) 036708; 1D MPI	128 EV68 CB, 1.25GHz					
decomposition	* 650 USD					
B.I. Schneider, L.A. Collins, S.X. Hu, Phys.	LANL Flash Supercomputer	0.54	1	7.6	7,6000	4.50
Rev. E 73 (2006) 036708; 2D MPI	256 AMD, 2.0 GHz					
decomposition	* 250 USD					

- > Состояние проблемы
- > Методы и подходы
 - » Трехмерные потенциалы
- Трехмерные эффекты зарядового обмена
- Моделирование экспериментальных данных
- > Заключение

Трехмерные потенциалы

Рассчитываются с помощью теории функционала плотности

Сопоставление 1D и 3D потенциалов

E.V. Chulkov, V.M. Silkin and P.M. Echenique, Surf. Sci. 437, 330 (1999).

Сопоставление 1D и 3D потенциалов

P.J. Jennings, R.O. Jones and M. Weinert, Phys. Rev. B. 37, 6113 (1988).

Сопоставление 1D и 3D потенциалов

E.V. Chulkov, V.M. Silkin and P.M. Echenique, Surf. Sci. 437, 330 (1999).

- > Состояние проблемы
- > Методы и подходы
- > Трехмерные эффекты зарядового обмена
 - Общие закономерности
- Моделирование экспериментальных данных

> Заключение

Эволюция электронной плотности

Cu(100) – огр. движение

Cu(110) – свободное движение

Эффективность электронного перехода 疑

- > Состояние проблемы
- > Методы и подходы
- > Трехмерные эффекты зарядового обмена
 - » Эффект «торможения» электрона
- Моделирование экспериментальных данных
- > Заключение

При использовании трехмерных потенциалов

Cu(111) – projected band gap

Осцилляции заселенности исчезают при больших скоростях

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
 - > Анизотропия и азимутальная зависимость
- > Моделирование экспериментальных данных

> Заключение

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- > Моделирование экспериментальных данных
 - Физическая модель вероятности
 электронного перехода

- Направление туннелирования электрона определяется энергетическим положением иона
- » Учитывается только отлет иона (эффект «потери памяти»)
- Классическая траектория (отличие менее 10%)

Ломоносова

> Учет модуля скорости - Doppler-Fermi-Dirac distribution

dE и Z_f определяются в k-пространстве; Z_f зависит от скорости иона

Скользящее рассеяние

$$F_{loss} = \int_{|\vec{k}'| > k_f} d\vec{k}'^3 \cdot \left| f(\vec{k}') \right|^2$$
$$F_{capture} = \int_{|\vec{k}'| < k_f} d\vec{k}'^3 \cdot \left| f(\vec{k}') \right|^2$$

Используется кинетическое уравнение

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- > Моделирование экспериментальных данных
 - > Зависимость от угла выхода

> Заключение

L. Guillemot and V.A. Esaulov, Phys. Rev. Lett. 82, 4552 (1999).

$1 \text{ keV H}^+ \rightarrow Ag(111)/Ag(110)$

L. Guillemot and V.A. Esaulov, Phys. Rev. Lett. 82, 4552 (1999).

H⁺ (Θ_{in} = 40⁰) -> Си поликристалл

B. Bahrim, B. Makarenko and J.W. Rabalais, Surf. Sci. 594, 62 (2005).

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- > Моделирование экспериментальных данных
 - > Зависимость от энергии иона

> Заключение

 $|\text{Li}^+ -> \text{Ag}(100); \Theta_{\text{in}} = 45^0, \Theta_{\text{out}} = 90^0$

A.R. Canario, A.G. Borisov, J.P Gauyacq and V.A. Esaulov, Phys. Rev. B. 71, 121401(R) (2005).

Комментарий к расчетам

Подхват электрона при отлете $Li^+ \sim$ потере электрона при отлете Li^0

Необъясненные эксперименты

Figure 2. Li neutral fraction (Φ°) obtained in scattering on Cu(111), Ag(111) and Au(111) surfaces as a function of exit energy. The lines correspond to a calculation within the jellium model (see text).

 $Li^+ \rightarrow Ag(111)/Cu(111)/Au(111); \Theta_{in} = 45^0, \Theta_{out} = 90^0$

A.R. Canario, T. Kravchuk and V.A. Esaulov, New Journal of Physics 8, 227 (2006).

Немонотонность Р(Е)

Пов-ть	Ef, 3 B	Z _f , ат. ед.
Ag(111)	-4,74	6,5 – 7,0
Cu(111)	-4,94	7,7 - 8,4
Au(111)	-5,31	7,8-9,1

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- > Моделирование экспериментальных данных
 - > Скользящее рассеяние и азимутальная зависимость

> Заключение

Модель пересекающихся сфер Ферми 🔄

Распределение активного электрона в двумерном k-пространстве для системы H⁻-Al(111)

 $| H^+ \rightarrow Al(111); v_{norm} = 0,02$ ат. ед.

F. Wyputta, R. Zimny and H. Winter, Nucl. Inst. Meth. B. 58, 379 (1991).

 $| H^+ \rightarrow Cu(111); v_{norm} = 0,02 \text{ ат. ед.}$

T. Hecht, H. Winter, A.G. Borisov, J.P. Gauyacq and A.K. Kazansky, Phys. Rev. Lett. 84, 2517 (2000).

49

Азимутальная зависимость для Cu(110)

Fig. 5 Left panel: H⁻ fraction as function of parallel velocity for scattering from Cu(110) surface with a normal velocity component of $0.02 a_0 E_h \hbar^{-1}$. Calculations within the jellium model, (\bigcirc) and (\bigcirc) experimental data for azimuthal settings close to $\langle 001 \rangle$ and $\langle 1\overline{10} \rangle$ directions, respectively. Right panel: Same as left panel, but for Cu(111) surface. (\longrightarrow) Calculations within the jellium model, (\bigcirc) and (\bigcirc) experimental data for azimuthal settings close to $\langle 1\overline{10} \rangle$ directions, respectively. Right panel: Same as left panel, but for Cu(111) surface. (\longrightarrow) Calculations within the jellium model, (\bigcirc) and (\bigcirc) experimental data for azimuthal settings close to $\langle 1\overline{10} \rangle$ and $\langle 1\overline{21} \rangle$ directions, respectively.

Учитывая анизотропию распространения электрона, получаем модель сдвига эллипсоида Ферми

I.K. Gainullin, Physical Review A 95, 052705 (2017).

 $| H^+ \rightarrow Cu(110); v_{norm} = 0,02 \text{ ат. ед.}$

T. Hecht, H. Winter, A.G. Borisov, J.P. Gauyacq and A.K. Kazansky, Phys. Rev. Lett. 84, 2517 (2000).

52

- > Состояние проблемы
- > Методы и подходы
- Трехмерные эффекты зарядового обмена
- Моделирование экспериментальных данных
- > Заключение

Основные результаты

- Методология прямого трехмерного моделирования зарядового обмена
- > 3D потенциалы для Cu(100), Cu(110), Cu(111)
 - Эффект торможения/задержки электрона
 - > Анизотропия распространения электрона в Cu(110)
- Физическая модель расчета вероятности электронного перехода расчета зарядового обмена с учетом направления скорости иона
- Количественное совпадение с широким спектром экспериментов
 - Объяснение немонотонной зависимости перезарядки Li на поверхности Cu(111), Au(111) от энергии иона
 - Объяснение азимутальной зависимости перезарядки Н на поверхности Cu(110)

Спасибо за внимание

