

Московский государственный университет имени М.В. Ломоносова, Химический факультет

Применение суперкомпьютерных технологий для решения задач гетерогенного катализа с участием наночастиц переходных металлов

Пичугина Д. А., Кузьменко Н.Е., Голосная М.Н., Никитина Н.А., Агафонов А.А.

Кластеры золота: структурное разнообразие и уникальные свойства

Кластеры золота в катализе

- гидратация олефинов;
- низкотемпературное окисление СО;
- гидрохлорирование ацетилена до винилхлорида;
- окисление пропена;
- окисление спиртов молекулярным кислородом;
- изомеризация углеводородов;
- прямой синтез H₂O₂;
- окисление алканов

Изображение поверхности образцов Au/FeO_x, полученное методом STEM-HAADF¹

STEM-HAADF – просвечивающая электронная микроскопия атомного разрешения с коррекцией сферических аберраций

G.C. Bond, 1973 *M.* Haruta, 1987 G.J. Hutchings, 1985 *M.* Haruta, 1996 L. Prati, M. Rossi, 1998 A.S.K. Hashmi, 2000 G.J. Hutchings, 2002

G.J. Hutchings, 1998

Активность Au_n в окислении CO при разных температурах²

<u>G. Hutchings</u>: активные центры в окислении CO – кластеры золота, содержащие ≈ 10 атомов, 0.5 нм и имеющие двухслойное строение.

¹ A. A. Herzing, C.J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings. *Science*, 2008, **32**1, 1331; ²S. Chrétien, S. K. Buratto, H. Metiu. *Current Opinion in Solid State and Materials Science*, 2007,**11**,62 ³

Успехи и особенности теоретической химии золота

[Au₆]²⁺, [Au₉]³⁺. D.M.P. Mingos. Molecular-orbital calculations on cluster compounds of gold. *J. Chem. Soc., Dalton Trans.*, 1163 (1976).

Определение структуры [Au₂₅(SR)₁₈]⁻

J. Akola, M. Walter, R.L. Whetten, H. Hakkinen, H. Gronbeck. *J. Am. Chem. Soc.*, 130, 3756 (2008)
M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray. *J. Am. Chem. Soc.*, 130, 3754 (2008)
M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin. *J. Am. Chem. Soc.*, 130, 5883 (2008)

Релятивистское сжатие (R_r/R_{nr}) 6s-орбиталей для тяжелых элементов как функция числа электронов в атоме Z.

Pyykkö P. Theoretical chemistry of gold III. *Chem. Soc. Rev.*, 2008, 37, 1967.

Рассчитанные значения потенциала ионизации для Cu, Ag и Au (эВ)

P. Neogrády, V. Kellö, M. Urban, A. J. Sadlej: Int. J. Quantum Chem., 1997, 63, 557.

Исследуемые объекты: соединения золота

1. Активационные процессы:

1.1. молекулярный водород и кислород;

1.2. углеводороды C_nH_{2n+2} (n=1÷8), R–CH=CH₂ и R–C≡CH (R= –H, –C₄H₉, –C₆H₅, –CH₂–C₆H₅);

1.3. S-содержащие органические соединения RSH

 $(R = -C_nH_{2n+1}, -CH_2-CH(NH_2)COOH,$ производные фенилтерпиридина и пиридинимидазола);

1.4. сорбция Au(CN)₂⁻ на поверхности активированного угля (одна из стадий промышленного выделения золота из растворов и пульп сорбционным методом).

2. Каталитические процессы:

2.1. прямой синтез H₂O₂ из водорода и кислорода;

2.2. окисление углеводородов (на примере CH₄);

2.3. изомеризация непредельных углеводородов (миграция двойной связи в C_4H_8 и C_6H_5 - CH_2 - $CH=CH_2$);

2.4. селективное гидрирование непредельных соединений (на примере смеси $C_2H_2 + C_2H_4$);

2.5. окисление СО.

Общая схема исследования

Изменение энергии с учетом энергии нулевых колебаний (энергия связи, энергия адсорбции): $\Delta E_1 = E(Au_n - X) - E(Au_n) - E(X)$

Изменение стандартной энергии Гиббса: $\Delta_r G^\circ = \Delta E + \Delta G_T$

Энергия активации:

 $\mathsf{E}_{\mathsf{a}} = \boldsymbol{E}(\mathsf{\Pi}\mathsf{C}) - \boldsymbol{E}(\mathsf{A}\mathsf{u}_\mathsf{n} - \mathsf{X})$

Характеристики кластера: $E_{\mu c \kappa} = E(Au_n^*) - E(Au_n),$ $E_{3D-2D} = E(Au_n^*) - E(Au_n^*),$ $E_{c B} = (n \cdot E(Au) - E(Au_n))/n,$ $E_{g} = E(HCMO) - E(B3MO)$

Методы и программы

Метод расчета: DFT (неограниченный вариант), функционал PBE¹, скалярно-релятивистская схема при использовании гамильтониана Дирака-Кулона-Брейта² или псевдопотенциала SBK.

Базисный набор³:

Au {30s29p20d14f}/[8s7p5d2f]; Ag, Pd {26s23p16d5f}/[7s6p4d1f]; H, C, O, S {10s7p3d}/[3s2p1d]

$$H_{DC} = \sum_{j} H_{D}(j) + \sum_{j>k} g_{jk}^{C,np}$$

$$H_{DCB} = H_{DC} + \sum_{j>k} \left(g_{j,k}^{B,np}\right)$$

$$g_{jk}^{C,np} = \frac{1}{|r_{j} - r_{k}|} = \frac{1}{|r_{jk}|}$$

$$m^{p} = -\frac{1}{2} \left(\frac{(\alpha_{j}, \alpha_{k})}{r_{jk}} + \frac{(\alpha_{j}, (r_{j} - r_{k}))(\alpha_{k}, (r_{j} - r_{k}))}{r_{jk}^{3}}\right)$$

Структуры переходных состояний определены

по алгоритму Берни, идентификация проводилась методом IRC⁴.

Программы: Priroda, NW Chem, Material Studio

Вычислительная база: персональные компьютеры лаборатории, суперкомпьютерный комплекс МГУ.

 $g_{ik}^{B,i}$

¹J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865;
²K.G. Dyall, J. Chem. Phys., 1994, 100, 2118;
³D.N. Laikov, Chem. Phys. Lett., 2005, 416, 116;
⁴H. B. Schlegel, J. Comput. Chem. 1982, 3, 214.

Абсолютная ошибка в расчете межатомного расстояния (ΔR) и энергии диссоциации (ΔD₀) Au₂

Расчет энергии активации

$$Ag_2^+ + O_2 \xrightarrow{E_a} Ag_2O_2^+$$

 E'_a

Возможные продукты взаимодействия Ag₂⁺ и O₂^{*}

*T.M. Bernhardt, *Int. J. Mass. Spectr.*, 2005, **243**, 1.

Метод	Е _{а,} мэВ	∆Е, мэВ
Эксперимент*	68	-23
PBE	81	-30
M06L	23	-359
M06	744	-322
M06-2x	623	-385

Аргументация выбора моделей

¹S. Chrétien, S. K. Buratto, H. Metiu. *Current Opinion in Solid State and Materials Science*, 2007,**11**,62 ²A. A. Herzing, C.J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings. *Science*, 2008, **32**1, 1331

Оптимизированные структуры Au_n (n=8, 10, 12, 20, 32)

Микрофотография Au₂₀/C, полученная HAADF-STEM (Z. W. Wang and R. E. Palmer. **Nanoscale**, 2012, 4, 4947)

Оптимизированные структуры изомеров Au₁₂ и относительные энергии в кДж/моль

E(1) – E(11) =25 кДж/моль¹ 2 кДж/моль PW91/Lanl2DZ² 25 кДж/моль SVWN/SRECP³

Е_{св}(**1**) =205 кДж/моль Е_g(**1**) =92 кДж/моль

Е_{св}(**11**) =203 кДж/моль Е_g(**11**) =90 кДж/моль

1. Mukhamedzyanova D.F., Ratmanova N.K., Pichugina D.A., Kuz'menko N.E. J. Phys. Chem. C. –2012. –V. 116. –P. 11507–11518.

2. Li Xi.-B., Wang H.-Y., Yang X.-D., Zhu Z.-H. J. Chem. Phys. –2007. –V. 126. –P. 084505(8).

3. Assadollahzadeh B., Schwerdtfeger P. J. Chem. Phys. –2009. –V. 131. –P. 064306(11).

2D и 3D Au₁₂ на регулярной поверхности MgO(100)

Еадс/атом = 24 кДж/моль

Изменение электронной плотности при адсорбции Au₁₂ на MgO(100)

синяя область –недостаток электронной плотности, красная область – избыток электронной плотности.

Протокол расчета: PBE, базис плоских волн (340 эВ), ультрамягкие псевдопотенциалы, ширина вакуумного слоя 15 А, трехслойная модель, программа CASTEP

Mukhamedzyanova D.F., Ratmanova N.K., Pichugina D.A., Kuz'menko N.E. J. Phys. Chem. C. –2012. –V. 116. –P. 11507–11518. 14

Влияние дефектной поверхности MgO(100) на структуру и распределение электронной плотности в Au₁₂ (3D)

Изменение электронной плотности при адсорбции

Au₁₂ на MgO(100)

7•10¹³ центров/см²

Параметр	Au ₁₂ /MgO(100)	Au ₁₂ /MgO(100) _{деф}
ρ, Á	2.75	2.86
γ	5.00	4.50
Е _{адс/атом} , кДж/моль	24	36
Е _{а,} кДж/моль	15	114
Е _а (эксп.)*, кДж/моль	11.6	_

Среднее расстояние между атомами золота:

Среднее координационное число металла:

*Højrup-Hansen K., Ferrero S., Henry C.R., Appl. Surf. Sci. 2004. V. 226. P. 167 – 172.

Mukhamedzyanova D.F., Ratmanova N.K., Pichugina D.A., Kuz'menko N.E. J. Phys. Chem. C. –2012. –V. 116. –P. 11507–11518.

Образование H₂O₂ из H₂ и O₂: окисление или гидрирование?

Ізвестные методы получения H₂C ✓антрахиноновый процесс; ✓окисление спиртов; ✓электрохимический синтез

Известные методы получения H₂O₂ Альтернативный способ получения H₂O₂

$$H_2 + O_2 \xrightarrow{M} H_2O_2 \quad \Delta_r G^0 = -121$$
кДж/моль
 $\searrow H_2O \quad \Delta_r G^0 = -237$ кДж/моль

* Sivadinarayana C., Choudhary T.V., Daemen L.L., Eckert J., Goodman D.W. J. Am. Chem. Soc. 2004. 126. 38

Основные стадии образования H₂O₂ и H₂O на поверхности

Образование H₂O₂ на нанесенных наночастицах Au, Pd, и Au–Pd*:

1) $H_{2(s)} \rightarrow 2H_{(s)}$	Катализатор	Скорость, mol H ₂ O ₂ h ⁻¹ kg _{cat} -1	Селективность, %
2) $H_{(s)}$ +OO $H_{(s)} \rightarrow H_2O_{2(s)}$, 3) $H_2O_{2(s)} \rightarrow H_2O_{2(g)}$	Au(5%)/C	1	-
4) $O_{2(s)} \rightarrow 2O_{(s)}$	AuPd(2.5%)/C	110	80
5) $H_2O_{2(s)} \rightarrow OH_{(s)}+OH_{(s)}$ 6) $H_2O_{2(s)} \rightarrow H_2O_{(s)}+O_{(s)}$	Pd(5%)/C	55	34
c) 112 c 2(s) 112 c (s) c (s)	Au(5%)/Al ₂ O ₃	2.6	-
Условие селективного	AuPd(2.5%)/Al ₂ O ₃	15	14
ооразования н ₂ О ₂ : низкие значения E _a (1),	$Au(5\%)/Ai_2O_3$	5	-
E _a (2), E _{des} (H ₂ O ₂); высокие значения E _a (4),	AuPd(2.5%)/TiO ₂	64	70
E _a (5), E _a (6)	Pd(5%)/TiO ₂	30	21

*J. Edwards. J., A.F. Carley, A.A. Herzing, C. J. Kiely, G.J. Hutchings, **Faraday Discuss.**, 2008, 138, 225.

Модели активных центров, содержащих золото и палладий

Группа 1. Кластеры золота: Au₈ (2D), Au₂₀ (3D T_d), Au₃₂ (3D) Влияние структуры и размера кластера на

протекание стадий образования H₂O₂ и H₂O.

Группа 2. Биметаллические кластеры: Au_{8-x}Pd_x (x=1, 4, 7) Поиск оптимального соотношения Au:Pd в активном центре.

Группа 3. Биметаллические кластеры Au₁₉Pd, различающиеся положением атома Pd на вершине, ребре и гране кластера Какая структурная организация атома Pd способствует образованию H₂O₂?

Изменение энергии (Δ*E*) и стандартной энергия Гиббса при 298К (Δ*G*°), а также энергия активации (E_a и Δ*G*[‡]) в основных стадиях образования H₂O₂ на Au₂₀, активный центр: вершина (величины приведены в кДж/моль)

1. Образование H₂O₂:

 $HAu_{20}OOH \rightarrow Au_{20}H_2O_2$

2. Десорбция H₂O₂:

 $Au_{20}H_2O_2 \rightarrow Au_{20} + H_2O_2$

3. Образование ОН:

 $Au_{20}H_2O_2 \rightarrow Au_{20}(OH)_2$

Стадия	1	2	3
ΔE	-38	38	-82
ΔG^0	-47	3	-75
E _a	110	-	26
ΔG≠	106	-	36

Beletskaya A.V., Pichugina D.A., Shestakov A.F., Kuz'menko N.E. J. Phys. Chem. A. 2013.117. 6817.

Образование H_2O_2 на $Au_{19}Pd$

*H.C. Ham, G.S. Hwang, J. Han, S.W. Nam, T.H. Lim. **J. Phys. Chem. C,** 2010, 114, 14922

**Zhou M., Zhang A., Dai Z., Zhang C., Feng J. Chem. Phys. 2010. 132. 194704

Beletskaya A.V., Pichugina D.A., Shestakov A.F., Kuz'menko N.E. J. Phys. Chem. A. 2013.117. 6817.

Магические кластеры Au_{20-x}Ag_x (x = 0, 1, 4, 16, 19, 20)

I – атомы Au с низким координационным числом;

II – атом Ag, окруженный атомами золота на фрагменте Au(111);

- III атом Ag, окруженный атомами золота на фрагменте AgAu(111);
- IV, V атом Au, окруженный атомами Ag;
- VI атомы Au с низким координационным числом.

Изображения октаэдрических кластеров Ag и Биметаллмческих кластеров Ag-Au, в которых атомы золота занимают реберные позиции

Y. Liu, S. Pedireddy, Y.H. Lee, R.S. Hegde, W.W. Tjiu, Y. Cui and X. Yi Ling, *Small*, 2014, **10**, 4940

Взаимодействие Ag₂₀ с кислородом (энергия в кДж/моль)

Pichugina D.A., Polynskaya Y.G., Kuz'menko N.E. Phys. Chem. Chem. Phys., 2016, 18, 18033.

Энергетическая диаграмма взаимодействия кластера с кислородом

Pichugina D.A., Polynskaya Y.G., Kuz'menko N.E. Phys. Chem. Chem. Phys., 2016, 18, 18033.

Энергия активации диссоциации кислорода (кДж/моль) на различных фрагментах Ag_n и типичная структура переходного состояния

Ag₃, Ag₅, Ag₁₃, Ag₃₈ [Phys. Chem. Chem. Phys., 2014, V. 48, P. 26600] Ag₈ [J. Phys. Chem. C, 2010, V. 114, P. 12610] Ag₁₉, Ag₂₀ [Science, 2010, V. 328, P. 224]

Адсорбция серосодержащих соединений на золоте

Шпигун О.А. Журн. физ. хим. 2012. 86. 10. 1739

стабилизированными L цистеином 26

Образование тиолятов из CH₃SH на Au₂₀

1) $CH_3SH + Au_{20} \rightarrow CH_3SH - Au_{20}$

Структура TS₄ эстафетного механизма

Magic Structure and Composition of Protected Gold Clusters

[L_sAu_nX_m]^q

 Au_{n-k} is a gold core protected by m electron-withdrawing X ligands (*i.e.*, -Hal, -SR, -C=CH) s weakly bound L ligands (-PR₃, *dpmp*).

Core-shell structure of a protected cluster

Magic composition based on the "Superatom Model"¹

 n_e is the number of free metal valence electrons, v is the atomic valence (for gold +1).

n_e=n·v-m-q

If $n_{\rm e} = 2, 8, 18, 34, \dots$ the clusters are stable.

Walter M., Akola J., Lopez-Acevedo O., Jadzinsky P.D., Calero G., Ackerson C.J., Whetten R.L., Grönbeck H., Häkkinen H. *PNAS* 2008, 105, 9157–9162 Reactions catalyzed by protected gold clusters

 $Au_{25}(SR)_{18}/MO_x$, $Au_{38}(SR)_{24}/MO_x$: CO + O₂ \rightarrow CO₂

 $\begin{array}{l} Au_{25}(SR)_{18}, Au_{25}(SR)_{18}/SiO_2, Au_{25}(SG)_{18}/HAP, \\ Au_{38}(SR)_{24}/SiO_2, Au_{55}(PPh_3)_{12}CI_6, \\ [Au_{25}(PPh_3)_{10}(SC_{12}H_{25})_5CI_2]^{2+} \end{array}$

Au₂₅(SR)₁₈:

Au₂₅(SR)₁₈/MgO:

G. Li, R. Jin. Atomically Precise Gold Nanoclusters as New Model Catalysts. *Accounts of Chemical Research*, 2014, 47, 816-824

Au_n(SR)_m Catalytic Systems: Bridge between Homogeneous and Heterogeneous Catalysis

Cluster in solution

UV-vis spectrum (left) and MS pattern (right) of $Au_{20}(SR)_{18}$

Supported ligand cluster

Mild pretreatment of the catalysts at 100 – 150 °C can increase the activity (Temperature of ligand desorption is up 170 °C)

Supported cluster without ligands

Possible Gold Active Sites:

Sites "A": ions from ligand shell Sites "B": atoms or ions located on cluster's core Sites "C": atoms or ions located on clustersupport interface Sites "D": low coordinated atoms

Activation of O_2 and CO on $Au_{20}(SCH_3)_{16}$ and the creation of active sites

Теоретическая группа исследования структуры и свойств кластеров металлов, Лаборатория молекулярной спектроскопии, Химический факультет, МГУ имени М.В. Ломоносова

Заведующий лабораторией:

Проф. Н.Е. Кузьменко

М. Голосная

Н. Никитина

Ю. Полынская

Представленная работа поддержана грантами: РФФИ N 17-03-00962; Грантом Ведущие научные школы РФ НШ-8845.2016.3 «Физическая химия наноструктурированных материалов и катализаторов».

Спасибо за внимание !

Спасибо за внимание!