Моделирование процессов эмиссии с поверхности монокристалла и исследования эффектов фокусировки

Моделирование процессов в наноразмерных атомных структурах под действием частиц низких энергий методом молекулярной динамики

В.Н. Самойлов, А.И. Мусин, Г.В. Корнич, Д.В. Широкорад, Е.В. Дуда, А.А. Ермоленко

19 февраля 2018 г.

Постановка задачи

Модель 21 атома

$$E = E_i - E_b$$
$$\cos \theta = \sqrt{\frac{E_i \cos^2 \theta_i - E_b}{E}}$$

Суперкомпьютер "Ломоносов"

Распределения по E и $(1 - \cos \theta)$

Распределение распыленных атомов по E и 1 – $\cos \theta$ для углов φ [88, 5°, 91, 5°].

Распределения по E и $(1 - \cos \theta)$

Распределение распыленных атомов по E и 1 – $\cos \theta$ для углов φ [43, 5°, 46, 5°].

[1] Мусин А.И., Самойлов В.Н. Эффект перефокусировки по азимутальному углу атомов, эмитированных с поверхности грани (001) Ni: сравнение двух моделей расчета // Тезисы докладов 44-й Международной Тулиновской конференции "Физика взаимодействия заряженных частиц с кристаллами", Москва, 27–29 мая 2014. Москва: Университетская книга, 2014. С. 73. Устный доклад.

Перефокусированные атомы

Перефокусированные атомы

Распределения эмитированных атомов по азимутальному углу φ_0 для всех энергий E и полярных углов вылета ϑ , наблюдаемых в интервалах углов φ [88, 5°, 91, 5°], [85, 5°, 88, 5°], [82, 5°, 85, 5°].

Многозначность распределений

Распределение перефокусированных атомов для углов θ [56, 3°, 57, 8°] и энергии E 2, 5 \pm 0, 4 эВ, наблюдаемых в интервалах углов φ [45°, 90°], в модели 21 атома.

[2] Мусин А.И., Самойлов В.Н. О многозначности сигнала перефокусированных атомов, эмитированных с поверхности грани (001) Ni // Сборник тезисов "Материалы и технологии XXI века", 11–12 декабря 2014, Казань: Изд-во Казанского федерального университета, 2014. С. 276. / [Электронный ресурс] – 1 электрон. опт. диск (CDROM), 12 см. Стендовый доклад.

Распределение по E и $arphi_0$

Дифференциальное распределение по начальному азимутальному углу φ_0 и энергии E эмитированных атомов для полярного угла вылета θ [56, 3°, 57, 8°], наблюдаемых в интервале углов φ [82, 5°, 85, 5°], по модели 5 атомов.

Распределение по E и $arphi_0$

Дифференциальное распределение по начальному азимутальному углу φ_0 и энергии E эмитированных атомов для полярного угла вылета θ [56, 3°, 57, 8°], наблюдаемых в интервале углов φ [82, 5°, 85, 5°], по модели 21 атома.

Наблюдаемость перефокусированных атомов

Распределения эмитированных атомов по энергии E и $1 - \cos \theta$, наблюдаемых в интервале азимутальных углов [76, 5°, 79, 5°].

Наблюдаемость перефокусированных атомов

Распределение всех распыленных атомов по энергии E, наблюдаемых в интервале углов φ [76,5°,79,5°] и θ [65,0°,66,4°].

[3] Самойлов В.Н., Мусин А.И. Эффекты фокусировки атомов, эмитированных с грани (001) Ni, с разрешением по углам и энергии // Известия РАН. Серия физическая. 2018. Т. 82. № 2, с. 1-6.

[4] V.N. Samoilov, A.I. Musin. Focusing effects for atoms sputtered from (001) Ni face with energy and angular resolution // Bulletin of the Russian Academy of Sciences: Physics. 2018. V. 82, No. 2. P. 150-154.

Выводы

- С помощью модели молекулярной динамики исследованы особенности фокусировки и перефокусировки атомов, эмитированных с поверхности грани (001) Ni, по азимутальному углу при формировании распределений распыленных атомов с разрешением одновременно по полярному углу и энергии. Исследованы механизмы формирования особенностей этих распределений.
- 2. В азимутальном направлении узел центр линзы из двух ближайших атомов поверхности различие распределений, рассчитанных по моделям 21 и 5 атомов, связано с рассеянием эмитируемых атомов на атоме, расположенном за линзой, который присутствует только в модели 21 атома. В модели 21 атома перефокусированные атомы могут образоваться ближе к центру линзы. Этот эффект обусловлен рассеянием эмитированных атомов последующими атомами за линзой.

Выводы

- Рассчитаны дифференциальные распределения распыленных атомов по начальному углу φ₀ и энергии E. Обнаружена многозначность сигналов фокусированных и перефокусированных атомов по углу вылета φ₀ в модели 21 атома и фокусированных атомов по углу вылета φ₀ в модели 5 атомов при сравнительно небольших значениях энергии E. Показано, что многозначность сигнала перефокусированных атомов связана с двумя различными механизмами рассеяния перефокусированных атомов для различных углов φ₀.
- Выявлены области значений полярного и азимутального углов вылета θ и φ и энергии E, для которых сигнал распыленных атомов на 100% формируется за счет эмитированных атомов, перефокусированных относительно центра линзы.

5. Обнаружено, что в распределениях с одновременным разрешением по энергии и полярному углу для фиксированных интервалов углов φ отчетливо различаются отдельные хребты — максимумы распределений для фокусированных и перефокусированных атомов. Показано, что в экспериментах с разрешением по углам и энергии оказывается принципиально возможным выделить отдельно сигнал только перефокусированных распыленных атомов.

ЭВОЛЮЦИЯ СВОБОДНЫХ МЕТАЛЛИЧЕСКИХ КЛАСТЕРОВ ПОД ДЕЙСТВИЕМ НИЗКОЭНЕРГЕТИЧЕСКОЙ БОМБАРДИРОВКИ ЧАСТИЦАМИ АРГОНА

Широкорад Д. В., Корнич Г. В. Запорожский национальный технический университет

Семинар

"Суперкомпьютерные технологии в науке, образовании и промышленности"

НОЦ "Суперкомпьютерные технологии" МГУ

Цель

- Выявить особенности модификации двудольных биметаллических кластеров под действием бомбардировки атомами аргона и проследить их связь с теплотой перемешивания компонентов кластеров.
- Установить влияние увеличения размера бомбардирующей частицы на процессы массопереноса, которые протекают в биметаллических кластерах, механизмы их активизации и способы управления этими процессами.
- Выяснить условия и динамику образования оболочечных структур из двудольных свободных кластеров под действием низкоэнергетических частиц аргона разного размера.

Потенциалы межатомного взаимодействия

металл-металл
 потенциал Акланда

$$E_{total} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} V(R_{ij}) - \sum_{i=1}^{N} \left(\sum_{j} \Phi(R_{ij}) \right)^{\frac{1}{2}}$$

потенциал Борна-Майера

$$V(R_{ij}) = A_{BM} e^{-r/a_{BM}}$$

металл-Аг
 потенциал Зиглера-Бирзака-Литтмарка (ZBL)

$$V(r) = \frac{Z_1 Z_2}{r} \phi(r),$$

□ Ar-Ar

потенциал HFDTCS1

$$V^{*}(x) = B^{*} \exp(-b^{*}x), \ x < x_{1}$$
$$V^{*}(x) = \exp(a_{1} + (x - x_{1})(a_{2} + (x - x_{2})(a_{3} + (x - x_{1})a_{4}))), \ x_{1} \le x \le x_{2}$$
$$V^{*}(x) = V^{*}_{HFD-B3}(x), \ x > x_{2}$$

Модификация свободных двудольных биметаллических кластеров под действием низкоэнергетической бомбардировки одиночными атомами аргона.

39, 195 атомов Cu, Au, Ni и Al в половинке кластера, самостоятельное объединение половинок путем их слияния, принудительный нагрев до 500 К в течение 50 пс, 50 пс - неизменная температура и следующие 50 пс - охлаждение до 0 К. Бомбардировки со случайных направлений с заданной энергией в центр масс кластера.

Cleveland, C., & Landman, U. (1991). The energetics and structure of nickel clusters: Size dependence. *The Journal of Chemical Physics*, *94*(11), 7376.

Температуры и коэффициенты распыления кластеров при бомбардировках одиночными атомами Ar

Число атомов в многоатомных фрагментах распыленного материала

6

Bombarding cluster energy, eV

Радиусы монокомпонентных частей и расстояния между их центрами для Ar₁ после 100 пс эволюции

Визуализация биметаллических кластеров после 100 пс эволюции в результате взаимодействия с частицей Ar₁

Yasuda, H., & Mori, H. (1994). Cluster-size dependence of alloying behavior in gold clusters.*Zeitschrift Für Physik D Atoms, Molecules and Clusters, 31*(1), 131-134.

Yasuda, H., & Mori, H. (1992). Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters.*Physical Review Letters*, 69(26), 3747-3750.

Особенности влияния бомбардировки кластерами аргона на процессы массопереноса в свободных двудольных биметаллических кластерах.

195 атомов Cu, Au, Ni, Al и Bi в половинке кластера, самостоятельное объединение половинок путем их слияния, принудительный нагрев до 500 К в течение 50 пс, 50 пс - неизменная температура и следующие 50 пс - охлаждение близко к 0 К. Случайные бомбардировки в центр масс кластера.

Температуры и коэффициенты распыления металлических кластеров при бомбардировках кластерами Ar₁₃

Коэффициенты распыления монокомпонентных частей кластеров за 5 пс*

11

Bombarding particle energy, eV

Синергетический эффект выхода распыления

Kornich, GV, Betz, G., Kornich, VG, Shulga, VI, & Yermolenko, OA (2011). Synergism in sputtering of copper nanoclusters on graphite substrate at low energy Cu2 bombardment. *Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms*, 269(14), 1600-1603.
Andersen, HH, & Bay, HL (1974). Nonlinear effects in heavy-ion sputtering. *Journal of Applied Physics*, 45(2), 953-954. https://doi.org/10.1063/1.1663348
Andersen, HH, & Bay, HL (1975). Heavy-ion sputtering yields of gold: Further evidence of nonlinear effects. *Journal of Applied Physics*, 46(6), 2416-2422. https://doi.org/10.1063/1.321910

Число атомов в многоатомных фрагментах распыленного материала

13

Радиусы монокомпонентных частей и расстояния между их центрами в случае Ar₁₃ после 100 пс эволюции

Зависимость радиусов монокомпонентных частей и расстояний между ними от времени, 300 эВ

Эволюция биметаллических кластеров в течение 100 пс в результате взаимодействия с частицей Ar₁₃ с энергией 300 эВ

Cu-Bi

Cu-Au

Выводы

17

- Выполнено молекулярно-динамическое моделирования эволюции двудольных кластеров меди, медь-золото, медь-висмут, алюминий-никель, которые состоят из однокомпонентных долей с одинаковым числом атомов, под действием низкоэнергетических частиц Ar₁, Ar₂, Ar₁₃ в течение 5 и 100 пс. вычисления проводились с использованием авторского программного продукта, включая молекулярно-динамическое алгоритм для случая произвольных наноатомных систем, состоящих из атомов Cu, Au, Ni, Al, Bi и Ar с использованием технологий параллельного программирования MPI и OpenMP для компьютерних систем с распределенной и общей памятью.
- Показан постепенный переход от каскадно-рекойлового механизма распыления к термическому за первые 5 пс и общим время эволюции атомных систем 100 пс.
- Получены качественно другие формы зависимости потенциальной энергии и температуры от энергии бомбардирующей частицы для случае Ar₁₃ по сравнению с Ar₁; коэффициенты распыления за первые 5 пс, полученные при бомбардировке кластеров Ni-Al единичными атомами Ar, демонстрируют преобладание в распыленном материале атомов никеля над атомами алюминия, в то время как для случаев Ar₂ и Ar₁₃ преобладают атомы алюминия. Установлено, что наибольшие температуры имеет кластер Ni-Al, который имеет также и наименьшую отрицательную теплоту перемешивания для пары алюминий-никель по сравнению с другими кластерами.
- Установлен синергетический эффект при распылении двудольных кластеров под действием бомбардировки частицами Ar₂ и Ar₁₃ по сравнению с Ar_{1.}
- Идентифицирован процесс формирования <u>оболочечных наноструктур</u> с медным ядром и оболочкой из атомов висмута различной интенсивности после взаимодействия начального кластера Cu-Bi с частицами Ar и Ar₁₃ различной энергии в течение 100 пс. Кроме того, за последнее время были выполнены дополнительные расчеты эволюции этих систем для времен до 500 пс с целью более глубокого понимания происходящих процессов переноса.

Семинар

"Суперкомпьютерные технологии в науке, образовании и промышленности"

НОЦ "Суперкомпьютерные технологии" МГУ

КОМБИНИРОВАНИЕ МЕТОДОВ ГИПЕРДИНАМИКИ И ТЕМПЕРАТУРНО-УСКОРЕННОЙ ДИНАМИКИ ПРИ МОДЕЛИРОВАНИИ АТОМНЫХ СИСТЕМ

Е.В.Дуда, Г.В.Корнич

Запорожский национальный технический университет, г. Запорожье, Украина

План

- 1. Постановка задачи.
- 2. Метод гипердинамики (ГД).
- 3. Метод температурно-ускоренной динамики (ТУД).
- 4. Комбинирование методов гипердинамики и температурноускоренной динамики (ТУГД).
- 5. Моделирование диффузии вакансии в объеме двумерного кристалла.
- 6. Выводы.

Постановка задачи

Метод классической молекулярной динамики не позволяет исследовать процессы, связанные с так называемыми редкими событиями – термически активируемыми атомными переходами.

Для моделирования процессов, связанных с такими переходами, можно использовать методы ускоренной молекулярной динамики: гипердинамика;

температурно-ускоренная динамика;

метод параллельных реплик.

Arthur F. Voter, (Los Alamos NL / J. Chem. Phys. 1997; PRL, PRB 1998).

Метод гипердинамики

Частота переходов системы через энергетический барьер :

$$k = \widetilde{\nu} \cdot e^{-E_a / k_B T},$$

где Т – равновесная температура;

Е_a – энергия перехода.

При снижении всех энергетических барьеров системы на величину ΔE и неизменности предэкспоненциальных множителей, частоты переходов изменяются следующим образом:

$$\frac{k'}{k} = \frac{\widetilde{\nu}e^{-(E_a - \Delta E)/(k_B T)}}{\widetilde{\nu}e^{-E_a/(k_B T)}} = e^{\Delta E/(k_B T)}$$

Предэкспоненциальный множитель

Согласно гармоническому приближению теории переходного состояния (**)

$$\widetilde{\mathcal{V}} = \frac{\prod_{i=1}^{3n} \mathcal{V}_{i}^{0}}{\prod_{i=1}^{3n-1} \mathcal{V}_{i}^{*}},$$

где индекс "0" соответствует положению системы в исходном состоянии; * - положению системы в переходном состоянии;

n – число атомов системы.

Нормальные моды колебаний определяются формой потенциальной поверхности в окрестности потенциальных минимумов и седловых точек.

(**) G. H. Vineyard. J. Phys. and Chem. Solids. 1957.

Снижение энергетических барьеров

Синий – оригинальный потенциал U Зеленый – дополнительный потенциал U⁺ Красный – измененный потенциал U^{*}

$$U^{*} = U + \sum_{i} U_{i}^{+}$$

$$U_{i}^{+} = \begin{cases} \Delta E & \rho_{i} < R_{1} \\ \varphi(\rho_{i}) & R_{1} \le \rho_{i} < R_{2} \\ 0 & \rho_{i} \ge R_{2} \end{cases}$$

ρ_i – расстояние от *i*-го атома до ближайшего энергетического минимума;

 $R_1, R_2, \Delta E$ – параметры потенциала.

Метод температурно-ускоренной динамики

Заключается в моделировании системы при более высокой температуре T_{high} .

Отношения частот переходов через барьеры энергетические разные не сохраняются при увеличении температуры системы:

$$\frac{k_1}{k_2} \neq \frac{k_1'}{k_2'}$$

где величины со штрихами соответствуют температуре T_{high}, а величины без штрихов – температуре T_{low} . $\frac{k_1}{k_2} = \exp\left(\frac{E_2 - E_1}{k_P T_{low}}\right) \qquad \frac{k'_1}{k'} = \exp\left(\frac{E_2 - E_1}{L T_1}\right)$

$$\frac{1}{k_2'} = \exp\left(\frac{1}{k_B T_{high}}\right)$$

Метод температурно-ускоренной динамики

•
$$t_{low} = t_{high} \exp\left[\frac{E_a}{k_B}\left(\frac{1}{T_{low}} - \frac{1}{T_{high}}\right)\right]$$
 $t_{stop} = \frac{\ln(1/d)}{\nu_{min}}\left[\frac{\nu_{min}t_{short}}{\ln(1/d)}\right]^{T_{low}/T_{high}}$

 v_{min} – параметр, не больший минимальной нормальной моды системы; d – параметр, определяющий точность моделирования; t_{short} – минимальное значение t_{low} .

Изменение потенциала для
температурно-ускоренной динамики

$$U^* = (U - U_{min}) \cdot A(\rho) + U_{min}$$

$$A(\rho) = \begin{cases} T_{high} / T_{low} & \rho < R_1 \\ \psi(\rho) & R_1 \le \rho < R_2 \\ 1 & \rho \ge R_2 \end{cases}$$

$$\rho - paccroяние от атома до ближайшего
энергетического минимума U_{min};
R_1, R_2 - параметры потенциала.$$

$$t_{low} = t_{high} \cdot (\frac{T_{high}}{T_{low}})^{3/2} \cdot \exp\left[\frac{E_a}{k_B}\left(\frac{1}{T_{low}} - \frac{1}{T_{high}}\right)\right]$$

Объединение методов гипердинамики и температурноускоренной динамики

Алгоритм принятия переходов в этом методе совпадает с алгоритмом метода температурно-ускоренной динамики.

Построение энергетической ямы:

$$U^* = (U - U_{min}) \cdot A(\rho) + U_{min} + U^+$$

$$A(\rho) = \begin{cases} T_{high} / T_{low} & \rho < R_1 \\ \psi(\rho) & R_1 \le \rho < R_2 \\ 1 & \rho \ge R_2 \end{cases} \qquad U^+ = \begin{cases} V_0 & \rho < R_1 \\ \varphi(\rho) & R_1 \le \rho < R_2 \\ 0 & \rho \ge R_2 \end{cases}$$

$$t_{low} = t_{high} \cdot \left(\frac{T_{high}}{T_{low}}\right)^{\frac{3}{2}} \cdot \exp\left(E \cdot \left(\frac{1}{k_B T_{low}} - \frac{1}{k_B T_{high}}\right) + \frac{V_0}{k_B T_{low}}\right)$$

Особенности измененного потенциала

Сила F^* , действующая на атом, находящийся в системе с измененным потенциалом U^* , определяется следующим образом:

$$\boldsymbol{F}^* = A \cdot \boldsymbol{F} - (U - U_{min}) \boldsymbol{\nabla} A - \boldsymbol{\nabla} U^+,$$

где F – сила, действующая на атом, находящийся в системе с оригинальным потенциалом. A, U^+ являются функциями расстояния ρ от атома до ближайшего энергетического минимума. Поиск данных минимумов осуществляется независимо для каждого атома, что упрощает распараллеливание алгоритма нахождения сил F^* , действующих на атомы.

Сравнение результатов моделирования, полученных различными методами

Результаты, полученные методами ускоренной молекулярной динамики, сравнивались с результатами классической молекулярной динамики. Для проверки гипотезы о соответствии полученных распределений промежутков времени, которые проходили между двумя последовательными атомными переходами, одному закону распределения использовался критерий однородности Смирнова.

Нулевая гипотеза проверялась при различных уровнях значимости α.

Двумерный кристалл. Особенности модели.

- Периодические граничные условия
 - Направление сжатия кристалла

Двумерное пространство

Гексагональная решетка с вакансией. 511 атомов Потенциал Морзе:

$$U = D(e^{-2\alpha(r-r_0)} - 2e^{-\alpha(r-r_0)})$$

Мгновенная температура определяется из соотношения:

 $\mathbf{T}=\bar{E}/k_B$

Температура *T*₀ устанавливается и поддерживается термической ванной Берендсена:

 $F = -0.75 \nu m \omega_D (1 - T_0/T)$

Положениеэнергетическихминимумовопределяется методом градиентного спуска.

Вследствие деформации 6 возможных переходов вакансии разделяются на 2 типа.

- 14 α уровень значимости при котором удовлетворяется нулевая гипотеза.
- n отношение количества атомных переходов в направлении сжатия к общему числу переходов;
- z величина сжатия кристалла;
- t среднее значение времени, которое проходит между двумя последовательными переходами;

T _{low} , K	Метод	V ₀ , eV	T _{high} , K	t, ps	n	α
500	МД	-	-	175	0.374	-
	ГД	0.06	-	157	0.388	0.01
	ТУД	-	700	150	0.407	0.001
	ТУГД	0.04	600	176	0.386	0.1
		0.02	650	204	0.392	0.01
		0.02	600	208	0.384	0.1

 $R_1=0.3 A;$ $R_2=0.85 A;$ z=0.25%

Диффузия вакансии в объеме двумерного кристалла.

Выводы

- 1. Изменение потенциала межатомного взаимодействия позволяет улучшить метод температурно-ускоренной динамики.
- 2. Методы гипердинамики и температурно-ускоренной динамики могут быть объединены в рамках одного комбинированного вычислительного комплекса.
- 3. Представленный метод ускоренного динамического моделирования дает хорошую точность результатов, если сравнивать с результатами, которые дает молекулярная динамика. Это позволяет применять данный метод даже в случаях небольшого ускорения моделирования.
- 4. При подборе параметров, объединенный метод является более гибким, чем отдельно взятые методы гипердинамики и температурно-ускоренной динамики.

БЛАГОДАРНОСТЬ

Коллектив авторов выражает благодарность Суперкомпьютерному Комплексу МГУ им. М.В.Ломоносова за предоставление высокопроизводительных вычислительных ресурсов для проведения компьютерного моделирования.

Спасибо за внимание!