Некоторые задачи для высокопроизводительных вычислений

Галанин Михаил Павлович ИПМ им. М.В. Келдыша РАН

> МГУ им. М.В. Ломоносова 12 ноября 2013 г.

Содержание

- i. Комплекс программ CaPpaPI для проведения вероятностных расчетов термомеханики тепловыделяющих элементов
- іі. Метод Конечных СуперЭлементов Федоренко и некоторые его приложения
- ііі. Математическое моделирование канализированных радиационно ускоренных выбросов

Цель доклада

 Информирование коллег о работах по указанной тематике в научной группе докладчика в ИПМ им. М.В. Келдыша (11 отдел)

Комплекс программ CaPpaPI для проведения вероятностных расчетов термомеханики тепловыделяющих элементов

1 – ИПМ им. М.В. Келдыша РАН 2 – ОАО ВНИИНМ им. А.А. Бочвара

3 – ОАО «ОКБМ Африкантов»

С.М. Богатырь², <u>М.П. Галанин</u>¹, М.М. Горбунов-Посадов¹, А.С. Гусев³, А.С. Еременко², А.В. Ермаков¹, В.И. Кузнецов², В.В. Лукин¹, В.В. Новиков², А.С. Родин¹, А.В. Салатов², М.В. Сыпченко², А.А. Фальков³, К.Л. Шаповалов¹

Введение

Неопределенность входных параметров — » выходные приходится считать CB с неизвестными ФР

- Цель: создание компьютерной системы для проведения критериальных расчетов термомеханики (твэлов).
- Требования :
 - варьирование по заданным вероятностным законам входных параметров,
 - изменение количества выходных параметров,

 - представление результатов в удобной форме.

- Модель: коды START-3, RAPTA-5.2, RELAP/SCDAPSIM
- Программный код CaPpaPI (Complex of Programs for Probability Investigations)

- В работе GRS метод. Преимущества: широкое использование; отсутствие ограничений по количеству неопределенных параметров; неопределенность выходных параметров имеет хорошо обоснованную статистическую базу; не используются поверхности откликов.
- Разработка вероятностной методики на три блока:
 - моделирование последовательности выборок случайных параметров с заданными функциями распределений,
 - 2) моделирование работы объекта,
 - 3) анализ результатов расчетов.

Методика ВР

- eta confidence level доверительный уровень.
- γ quantile квантиль.
- Определить случайные границы (L_i,U_i), i = 1...n
 изменения выходных параметров такие, что

$$p\left\{\begin{matrix}U_1 & U_n\\ \int & \dots & g(y_1, \dots, y_n)dy_1 \dots dy_n > \gamma \\ L_1 & L_n\end{matrix}\right\} = \beta$$

• $g(y_1,...y_n)$ — плотность распределения выходных параметров, неизвестна. Выходные параметры — зависимые, зависимость неизвестна.

 Задача ВР: определение границ изменения выходных параметров путем проведения серии из N независимых случайных испытаний. Уровень надежности (β|γ) (safety level) оценки. • Расчетная формула:

$$eta = 1 - I(\gamma, s_n - r_n, N - s_n + r_n + 1) = \sum_{j=0}^{s_n - r_n - 1} C_N^j \gamma^j (1 - \gamma)^{N-j}$$

• Тогда:

$$(L_j = y_j(r_j), U_j = y_j(s_j)), j = 1...n,$$

 $s_n \le s_{n-1} - r_{n-1} - 1 \le s_1 - \sum_{j=1}^{n-1} (r_j + 1), r_n \ge r_{n-1} \ge ... \ge r_1.$

 Варианты односторонней оценки, без или с отбраковкой. Упрощения. Алгоритм отбора.

N для определения двусторонней доверительной области для различных n,β,γ

β\γ	0.95	0.96	0.97	0.98	0.99	n
0.95	93	117	156	235	473	1
	153	191	256	385	773	2
	207	260	348	523	1049	3
0.96	98	123	165	249	499	1
	159	200	267	402	806	2
	215	269	360	542	1086	3
0.97	105	132	176	266	533	1
	167	210	281	422	848	2
	224	281	376	565	1134	3
0.98	114	143	192	289	581	1
	179	224	300	451	905	2
	237	297	397	598	1199	3
0.99	130	163	218	329	661	1
	197	248	331	499	1001	2
	258	324	433	651	1307	3

 Основа алгоритма генерации случайных входных параметров генерация СВ *α*, равномерно распределенных на (0,1).

$$F_{\alpha}(x) = \begin{cases} 0, x \le 0, \\ x, x \in (0, 1), \\ 1, x \ge 1. \end{cases}$$

- СВ ξ , имеющая ФР $F_{\xi}(x)$,- $\xi = F_{\xi}^{-1}(\alpha)$
- RAN2 для *Q*, период повторения не хуже 2.3·10¹⁸.

Структура кода СаРраРІ

Взаимосвязи расчетных кодов в комплексе CaPpaPI

- START-3: термомеханический расчет твэла (или их группы) (режим нормальной эксплуатации)
- Готовит данные для расчета аварии типа LOCA с помощью RAPTA-5.2.
- RELAP: серия теплогидравлических расчетов. Расчет условий на границах твэлов и их неопределенности.
- Варианты связи кодов, включая их итерационное взаимодействие.

Графический интерфейс ПК СаРраРІ

Выбор конфигурации расчетных кодов

Основные сведения о текущем состоянии серии ВР

Графический интерфейс постобработчика серии ВР

Заключение

 Приведены материалы работы, посвященной созданию кода вероятностных расчетов (ВР) критериальных характеристик твэлов в условиях нормальной эксплуатации и постулируемых аварий типа LOCA. Работа выполнена на основе применения кодов START-3, RAPTA-5.2, RELAP.

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

Метод Конечных СуперЭлементов Федоренко и некоторые его приложения

М.П. Галанин¹ совместно с С.А. Лазаревой² и Е.Б. Савенковым¹

¹Институт прикладной математики им. М.В. Келдыша РАН

²Московский государственный технический университет им. Н.Э. Баумана

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

▲□▶ ▲□▶ ▲三▶ ▲三▶

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

Задачи с локальными сингулярностями

Задачи с локальными "сингулярностями" физической или геометрической природы:

- локальные, но резкие, скачки коэффициентов задачи (композитные среды и т.п.);
- локальные нагрузки (точечные силовые воздействия или тепловые источники и т.п.);
- расчетные области с локальными геометрическими сингулярностями ("скважины" и т.п.);

■ и многое другое . . .

SQ Q

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

Задачи и решения

Общая задача

diam ("сингулярность") « diam (расчетная область)

Традиционные КЭ или КР приближения ведут к задачам очень высокой размерности (размер сетки $h \approx 0.1 \text{ diam}$ (сингулярность)).

Возможные решения:

 адаптивные сетки (требуют специальных средств генерации сетки).

 специальные приближения на грубой сетке (сильно задачно-зависимый подход).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		~ ~ ~			

Метод конечных суперэлементов Федоренко (1974)

МКСЭ Федоренко

В исходном варианте предложен как вариант традиционных приближений Петрова-Галеркина с "базисными" функциями, которые являются точными решениями рассматриваемого уравнения в каждом СЭ отдельно.

Такое определение не позволяет использовать хорошо развитую теоретическую основу МКЭ прямо.

Цель

Целью нашей работы является создание теоретического базиса для анализа метода и его продвижение в новые области применения.

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

SQ Q

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		~~~			

### Метод конечных суперэлементов Федоренко (1974)

#### Основные моменты МКСЭ

- МКСЭ основан на декомпозиции полной расчетной области на меньшие подобласти – суперэлементы.
- МКСЭ имеет дело с грубой (суперэлементной) сеткой.
- Данная СЭ сетка заведомо не может разрешить всю локальную сингулярность решения, но ведет к задаче малой размерности.
- Для разрешения локальной сингулярности внутри каждого СЭ отдельно используется тонкая (в случае МКЭ/МКР) сетка. Вспомогательные задачи на тонких сетках могут быть решены независимо.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SQ Q

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	•000000000000000	00000			
	0000000	00000000			
		000			

Вводный пример: уравнение Лапласа

#### Вводный пример

Уравнение Лапласа:

$$-\Delta u = 0 \ \text{b} \ \Omega,$$
  
 $u|_{\partial\Omega} = g.$ 



Figure: область и СЭ

 $\Omega$  представляет собой многосвязную область с малыми "скважинами" (случай геометрической сингулярности).  $\Omega = \cup_{k=1}^{K} \Omega_k$ , где  $\Omega_k$  – суперэлементы.

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

SQ (~

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

Вводный пример: уравнение Лапласа

Уравнение для следов: уравнение Лапласа

#### Вариационное уравнение для следов

Формула Грина + операторы П.-С. = вариационное уравнение для следов решения  $\varphi$  на СЭ границах:

$$\varphi \in V_{\Gamma}$$
:  $b(\varphi, \psi) = f(\psi), \quad \forall \psi \in V_{\Gamma,0};$ 

- форма b(·, ·) является билинейной, непрерывной и положительно определенной;
- функция *φ* вводит следы решения на СЭ границах;
- пространства V_Г и V_{Г,0} вводят подходящие пространства следов и определены на границах СЭ.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ ��

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000000000000000000000000000000	00000			
	000000	000000000			
	000	0000000 000			

Вводный пример: уравнение Лапласа

#### МКСЭ и МКЭ: различия



М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000 ●0000 0000000 000	00000 000 00000000 0000000 000			
Общий слу	ันลดั				



• Исходная задача:

$$Au = f B \Omega;$$

• Формула Грина:

$$(\mathrm{Au}, \mathrm{v})_{\Omega} = \mathrm{a}(\mathrm{u}, \mathrm{v})_{\Omega} + \langle \delta \mathrm{u}, \gamma \mathrm{v} \rangle_{\partial \Omega},$$

где  $\delta$  – оператор "нормальной производной",  $\gamma$  – оператор взятия следа;

• Оператор Пуанкаре-Стеклова:

$$\mathbf{P}: \varphi \mapsto \mathbf{P}\varphi = \left. \delta \mathbf{U} \right|_{\partial \Omega},$$

где U обозначает решение задачи

$$\mathbf{AU} = 0 \ \mathbf{B} \ \Omega, \quad \mathbf{U}|_{\partial \Omega} = \varphi$$

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三

Введение	Теоретическое обоснование 0000000000000 0 <b>0000</b> 0000000 000	Численные результаты 00000 000 00000000 00000000 00000000 000	Заключение	Публикации	Благодарности
Общий слу	тчай				
Прим	еры				

• Оператор Лапласа (рассмотрен выше):

$$A = -\Delta, \quad a(u, v) = \int_{\Omega} \nabla u \nabla v \, d\Omega, \quad \delta u = \frac{\partial u}{\partial \vec{n}}, \quad \gamma u = u|_{\partial \Omega}.$$

• Оператор конвекции-диффузии:

$$\begin{split} \mathbf{A} &= -(\vec{\mathbf{c}}_1 \nabla) \mathbf{u} + \operatorname{div}(\vec{\mathbf{c}}_2 \mathbf{u} - \kappa \nabla \mathbf{u}) - \lambda \mathbf{u}, \\ \mathbf{a}(\mathbf{u}, \mathbf{v}) &= \int_{\Omega} \left( \vec{\mathbf{c}}_1 \nabla \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \vec{\mathbf{c}}_2 \nabla \mathbf{v} + \kappa \nabla \mathbf{u} \cdot \nabla \mathbf{v} \right) \, \mathrm{d}\Omega, \\ \delta \mathbf{u} &= \left( \kappa \nabla \mathbf{u} - \vec{\mathbf{c}}_2 \mathbf{u} \right) \cdot \vec{\mathbf{n}}, \quad \gamma \mathbf{u} = \mathbf{u} |_{\partial \Omega}. \end{split}$$

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

◆□▶ ◆□▶ ◆三▶ ◆三▶

E

590

Введение	Теоретическое обоснование 0000000000000 00●00 0000000 000	Численные результаты 00000 000 00000000 00000000 00000000 000	Заключение	Публикации	Благодарности
Общий слу	учай				
Прим	еры				

• Оператор линейной теории упругости:

$$\begin{aligned} \mathrm{Au} &= -\operatorname{div} \sigma(\mathbf{u}), \quad \mathrm{a}(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \sigma(\mathbf{u}) \epsilon(\mathbf{u}) \,\mathrm{d}\Omega, \\ \delta \mathbf{u} &= \sigma(\vec{\mathbf{u}}) \cdot \vec{\mathbf{n}}, \quad \gamma \vec{\mathbf{u}} = \vec{\mathbf{u}}|_{\partial\Omega}, \\ \sigma_{ij} &= 2\mu\epsilon_{ij} + \lambda\epsilon_{kk}\delta_{ij}, \quad \epsilon_{ij} = \frac{1}{2} \left( \frac{\partial \mathbf{u}_j}{\partial \mathbf{x}_j} + \frac{\partial \mathbf{u}_i}{\partial \mathbf{x}_i} \right) \end{aligned}$$

Институт прикладной математики им. М.В. Келдыша РАН

E.

 $\mathcal{O}\mathcal{Q}\mathcal{O}$ 

М.П. Галанин

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000000000000000000000000000000	●0000 000			
	0000000 000	00000000			
		000			

### Уравнение Лапласа



Figure: область и СЭ

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000	0000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

### Граничные базисные функции

Граничные базисные функции

- ПОЛИНОМЫ
- тригонометрические
- 🗖 сплайны
- кусочно линейные

. . .



Figure: вид граничных базисных функций и СЭ "базисных" функций

Институт прикладной математики им. М.В. Келдыша РАН

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	0000000000000	00000			
	00000	000			
	000000	00000000			
	000	0000000			
		000			

### Сходимость, число и размер СЭ фиксированы



М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000000000000000000000000000000	0000			
	000000 000	00000000			
		000			

### Примеры решений



М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

SQ (~

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000 00000 0000000 000	00000 000 00000000 0000000 000			
n					

Задачи теории упругости

Задачи теории упругости

Постановка задачи:

$$\begin{split} -\operatorname{div} \sigma(\vec{u}) &= 0 \ \text{b} \ \Omega, \\ \vec{u}|_{\Gamma_1} &= \vec{g}, \\ \sigma(u) \cdot \vec{n}|_{\Gamma_2} &= \vec{f}, \\ \partial\Omega &= \Gamma_1 \cup \Gamma_2, \\ \sigma_{ij} &= 2\mu\epsilon_{ij} + \lambda\epsilon_{kk}\delta_{ij}, \\ \epsilon_{ij} &= \frac{1}{2} \left( \frac{\partial u_j}{\partial x_j} + \frac{\partial u_i}{\partial x_i} \right). \end{split}$$



Figure: область и СЭ

М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

Введение	Теоретическое обоснование 0000000000000 00000 0000000 000	Численные результаты 0000 000 00000000 00000000 0000000000	Заключение	Публикации	Благодарности
Задачи тес	рии упругости				

#### Результаты расчетов

Область 2x2x2 СЭ. 2 типа СЭ (большие и малые кубические включения). Интенсивности деформаций и напряжений.



М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000000000000000000000000000000	00000			
	0000000	0000000			
	000	00000000 000			

Задачи теории упругости

## Граничные базисные функции

- Граничные базисные функции:
  - линейные
  - квадратичные
  - кубические лагранжевы
  - кубические эрмитовы
- Параметры моделирования:
  - число СЭ граничных узлов на одной СЭ границе: 8 500
  - число СЭ в расчетной области:

#### от 2 × 2 × 2 до 15 × 15 × 15

■ число точек вспомогательной сетки в одном СЭ: до  $1.5 \cdot 10^5$ 

Итого: до  $\sim 10^8$ точек вспомогательной сетки в расчетной области

▲□▶ ▲□▶ ▲三▶ ▲三▶

SQ (?

М.П. Галанин

Введение	Теоретическое обоснование 0000000000000 00000 0000000 000	Численные результаты 0000 000 00000000 00000000 0000000000	Заключение	Публикации	Благодарности
Задачи тес	ории упругости				
Отно	сительные оши	бки			



М.П. Галанин

Институт прикладной математики им. М.В. Келдыша РАН

▲□▶ ▲□▶ ▲□▶ ▲三▶

Ξ

5900

Введение	Теоретическое обоснование	Численные результаты	Заключение	Публикации	Благодарности
	000000000000 00000 0000000 000	00000 000 00000000 0000000 000			



- Развит алгоритм теоретического анализа МКСЭ. Он обеспечивает единообразную теоретическую базу для анализа метода.
- Главным объектом подхода является вариационное уравнение для следов. Традиционная и хорошо развитая теория могут быть использованы для анализа и исследования приближений метода.
- Выполнено численное исследование метода. Рассмотрен ряд 2d и 3d задач. Метод продемонстрировал свою эффективность и устойчивость.

SQ Q

Математическое моделирование канализированных радиационно ускоренных выбросов

#### М.П. Галанин, В.В. Лукин, В.М. Чечеткин, К.Л. Шаповалов

Институт прикладной математики им. М.В. Келдыша РАН

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

▲ 글 ▶

а) построение и исследование методами вычислительного эксперимента математической модели образования, коллимации и ускорения плазменного струйного выброса из окрестностей компактного объекта, окруженного аккрецирующим веществом, с учетом газодинамических, магнитных, гравитационных и радиационных эффектов; б) разработка численных методов и их реализация в виде программного комплекса для моделирования ускорения джетов в магнитогидродинамической и радиационной магнитогидродинамической постановках.

< □ > < 三 > < 三 > □ = □

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

### Объект математического моделирования

#### Астрофизические струйные выбросы

Джеты объекта SS433 (1977)  $V_{out} \approx 0.26 c, L = 3 \cdot 10^{11}$ км. Рисунок и результаты наблюдений в радиодиапазоне. Джеты галактики М87 (1918)  $V_{out} \approx 0.8$ -0.9 с,  $L = 5 \cdot 10^{16}$  км. Радио, рентгеновские и оптические наблюдения.





#### Объект SS433: выброс сгустков

Результаты наблюдений на телескопе VLBA (Mioduszewski, Rupen, Walker, & Taylor 2004)



#### Основные свойства

- Широкий спектр объектов (ядра активных галактик, микроквазары).
- Высокая энергетика выброса, субсветовые скорости вещества.
- Поток хорошо коллимирован ( $\alpha \approx 10^{\circ}$ ), его структура сохраняется на больших расстояниях.
- Поток в основном состоит из сгустков, выбрасываемых более-менее периодически.



### Пути построения моделей джета

#### Магнитная коллимация потока: результаты



#### Результаты

- Вдоль оси вращения системы формируется ускоряющий канал.
- Плазма может проникать внутрь этого канала, она источник вещества для джета.
- Получен ряд разрывов плотности плазмы, распространяющихся вдоль оси вращения системы.

#### Ускорение вещества давлением излучения

М.П. Галанин, Ю.М.Торопин, В.М. Чечеткин. "Радиационное ускорение порций вещества в аккреционных коронах около астрофизических объектов". Астрономический журнал, 1999г., т.76, стр.143-160.



- Рассмотрена нуль-мерная модель, включающая ОДУ динамики сгустка в поле излучения центрального объекта.
- Существование канала с горячим дном создает условия для эффективного ускорения излучением и вывода из системы сгустков вещества.

Максимальные скорости сгустков в коническом канале (в зависимости от угла  $\beta$  и коэффициента поглощения r)

	$\beta = 0$	$\beta = 3$	$\beta = 5$	$\beta = 10$
$r_2 = 0.0$	0.456	0.486	0.506	0.556
$r_2 = 0.4$	0.532	0.570	0.595	0.648
$r_2 = 0.8$	0.652	0.697	0.721	0.763
$r_2 = 0.9$	0.700	0.745	0.765	0.800

#### Схема 2.5-мерной модели



#### Две модельных задачи

- Образование замагниченного канала и коллимация выброса — МГД-задача.
- Радиационное ускорение плазмы в канале РМГД-задача.

# МГД модель образования канала

#### Система уравнений идеальной МГД

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla}\rho\vec{v} &= 0, \\ \frac{\partial \rho\vec{v}}{\partial t} + \vec{\nabla}\cdot\left(\rho\vec{v}\vec{v} + p\hat{I}\right) &= \frac{1}{4\pi}\left(\vec{\nabla}\times\vec{B}\right)\times\vec{B} + \vec{F}_g, \\ \frac{\partial e}{\partial t} + \vec{\nabla}\cdot\left(\vec{v}\left(e+p\right)\right) &= \frac{1}{4\pi}\left[\left(\vec{\nabla}\times\vec{B}\right)\times\vec{B}\right]\cdot\vec{v} + \vec{F}_g\cdot\vec{v}, \\ \frac{\partial \vec{B}}{\partial t} &= \vec{\nabla}\times\left(\vec{v}\times\vec{B}\right). \end{aligned}$$
$$\vec{v} &= \left(v_z, v_r, v_\varphi\right)^{\mathrm{T}}, \ \vec{B} &= \left(B_z, B_r, B_\varphi\right)^{\mathrm{T}}, \ e &= \frac{p}{\gamma-1} + \rho\frac{|\vec{v}|^2}{2}.\end{aligned}$$

Гравитационная сила:

$$\begin{cases} \vec{F}_g = -G\frac{M\rho}{R^2}\frac{\vec{r}}{R}, \ R = \sqrt{r^2 + z^2} > r_c, \\ \vec{F}_g = -G\frac{M\rho}{r_c^2}\frac{\vec{r}}{R}, \ R \leqslant r_c. \end{cases}$$

#### Тестирование численного МГД-кода

#### Программный комплекс

- Язык программирования Фортран-90;
- OpenMP распараллеливание для машин с общей памятью;
- Построение сеток ПК Gridder 2D (И.А. Щеглов, 2008).



#### Давление и мгновенные траектории

• Джет хорошо

коллимирован: канал имеет форму конуса с нелинейной образующей, угол наклона которой к оси Ozсоставляет порядка  $10^{\circ}$ .

- Поток ускоряется без разрывов. Форма канала аналогична форме аэродинамического сопла Лаваля.
- Преодолевается быстрая магнитная звуковая скорость.





# Осевое магнитное поле и мгновенные траектории

- Канал, сдерживаемый магнитным полем, устойчив, его характеристики слабо меняются со временем.
- Стенки канала оптически толстые — состоят из ненамагниченной плазмы высокой плотности.
- Газ внутри канала сильно разрежен и хорошо проницаем для излучения. Для томпсоновского рассеяния:

 $\tau = \sigma_T n L \approx 6.7 \cdot 10^{-4}.$ 



## Радиационная МГД задача

#### Система уравнений радиационной МГД

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla}\rho\vec{v} &= 0, \\ \frac{\partial \left(\rho\vec{v} + \vec{G}\right)}{\partial t} + \vec{\nabla} \cdot \left(\rho\vec{v}\vec{v} + p\hat{I} + \hat{T}\right) = \frac{1}{4\pi} \left(\vec{\nabla} \times \vec{B}\right) \times \vec{B} + \vec{F}_g, \\ \frac{\partial (e+U)}{\partial t} + \vec{\nabla} \cdot \left(\vec{v} (e+p) + \vec{W}\right) &= \frac{1}{4\pi} \left[\left(\vec{\nabla} \times \vec{B}\right) \times \vec{B}\right] \cdot \vec{v} + \vec{F}_g \cdot \vec{v}, \\ \frac{\partial \vec{B}}{\partial t} &= \vec{\nabla} \times \left(\vec{v} \times \vec{B}\right), \\ \vec{\omega} \cdot \nabla I(t, \vec{x}, \vec{\omega}) + k(t, \vec{x})I(t, \vec{x}, \vec{\omega}) = \beta(t, \vec{x}) \int_{\Omega} \Gamma(t, \vec{x}, \vec{\omega}, \vec{\omega}')I(t, \vec{x}, \vec{\omega}') \, d\omega'. \end{aligned}$$

$$T_{ik} = \frac{1}{c} \int_{\Omega} \omega_i \omega_k I \, \vec{\omega}, \quad \vec{W} = \int_{\Omega} \omega I \, d\omega = c^2 \vec{G}, \quad U = \frac{1}{c} \int_{\Omega} I \, d\omega, \\ e &= \frac{p}{\gamma - 1} + \rho \frac{|\vec{v}|^2}{2}. \end{aligned}$$

#### МДН: особенности численной реализации

Наиболее вычислительно тяжелая операция — вычисление интеграла рассеяния

$$S(t, \vec{x}, \vec{\omega}) = \int_{\Omega} \Gamma(t, \vec{x}, \vec{\omega}, \vec{\omega}') I(t, \vec{x}, \vec{\omega}') d\omega'.$$

Интегралы в разных пространственных точках вычисляются независимо, управляющие конструкции отсутствуют ⇒ вычисления на графических ускорителях (nVidia CUDA):

$$S_i^j = \sum_{k=1}^{N_\omega} \Gamma(\vec{x}, \vec{\omega}_j, \vec{\omega}_k') I_i^k \Delta \Omega_k,$$

- $I_i^k$ ,  $\{\vec{\omega_k}\}$  подгружаются в быструю память один раз для данной пространственной точки  $\vec{x_i}$ ;
- вычисление S^j в данной точке для данного направления производится в рамках одного треда.
- *i* номер пространственной точки ассоциируется с номером блока тредов;
- *j* номер дискретного направления ассоциируется с номером треда в блоке.

#### Эффективность

• Достигнуто ускорение исполнения процедуры в 80 раз относительно CPU.

#### Программный комплекс

- Языки: Фортран-90 и С++.
- УПИ интегрируется вдоль протрассированных лучей на каждом слое по времени. Трассировка лучей производится один раз в начале расчета и хранится в памяти (60 Гб).
- Комплекс для гибридных систем с общей памятью:
  - технология OpenMP параллельный расчет интенсивности излучения в разных точках расчетной сетки;
  - технология CUDA параллельный расчет источников рассеяного излучения в разных точках расчетной сетки.
- Вычисления производились на смешанном кластере К-100 ИПМ им. М.В. Келдыша РАН.

#### МДН с дискретизацией "от границы"



#### Затраты ресурсов на трассировку

Матал	Память,	Время,
плетод	Мб	МС
Г-МДН	187	17921
Т-МДН	196	39351
МДН S ₂₄	197	40356
МДН $S_{24}$	207	3734
OpenMP/12	207	<b>(</b> ×10.8 <b>)</b>

#### Результаты расчетов: ускорение выброса

- Выброс (джет)
   эффективно ускоряется
   излучением до 1/5*c*;
- Поток остается хорошо коллимированным благодаря фокусировке излучения внутри канала.





# Результаты расчетов: всплески скорости порождают сгустки в потоке

- Над диском периодически образуются всплески скорости.
- Быстро движущаяся плазма "нагребает" вал из более медленно движущегося газа.
- Джет состоит из периодически выбрасываемых сгустков.



#### Пример размерных параметров задачи

 $n_0 = 10^8 \text{ см}^{-3}$ Концентрация вещества  $L = 10^{15}$  см Линейный размер задачи  $B_0 = 0.06 \; \exists$ Напряженность магнитного поля  $T_0 = 200 \text{ K}$ Масштаб температуры  $M = 3M_{\odot}$ Масса центрального тела  $R_d = 0.6L_0 \approx 40$  a.e. Радиус тонкого диска  $T_i = 7 \cdot 10^4 \text{ K}$ Температура излучающего тела  $t_0 = 1.12 \times 10^9 \text{ c}$ Временной масштаб задачи Период образования сгустков  $t_b = 13$  дней  $V_0 = 0.9 \times 10^6 \text{ см/c}$ Масштаб скорости Скорость потока на выходе из  $V_{out} \approx 5 \times 10^4$  км/с расчетной области  $(L_{out} \approx 167 \text{ a.e.})$ 

## Параллельный алгоритм RKDG метода

Цель: создание эффективного численного метода для решения системы уравнений двумерной магнитной гидродинамики. Характеристики:

- Разрывный метод Галеркина второго порядка по пространству и времени
- Высокий уровень разрешения разрывов
- Бездивергентное магнитное поле
- Технология параллельного программирования MPI
- Масштабируемость
- Треугольные неструктурированные сетки

# Система нестационарных уравнений идеальной магнитной гидродинамики

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho v_j}{\partial x_j} = 0, & - \text{ ЗаКОН СОХР. МАССЫ} \\ \frac{\partial \rho v_1}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_1 v_j - \frac{B_1 B_j}{4\pi} + (p + \frac{\mathbf{B}^2}{8\pi}) \delta_{1j}) = 0, \\ \frac{\partial \rho v_2}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_1 v_j - \frac{B_2 B_j}{4\pi} + (p + \frac{\mathbf{B}^2}{8\pi}) \delta_{2j}) = 0, - \text{ ЗаКОН СОХР. ИМПУЛЬСА} \\ \frac{\partial \rho v_3}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_1 v_j - \frac{B_3 B_j}{4\pi} + (p + \frac{\mathbf{B}^2}{8\pi}) \delta_{3j}) = 0, \\ \frac{\partial e}{\partial t} + \frac{\partial}{\partial x_j} ((e + p + \frac{\mathbf{B}^2}{8\pi}) v_j - B_j \frac{(\mathbf{B} \cdot \mathbf{v})}{4\pi}) = 0, - \text{ ЗаКОН СОХР. ЭНЕРГИИ} \\ \frac{\partial \mathbf{B}}{\partial t} - \text{rot}(\mathbf{B} \times \mathbf{v}) = 0. - \text{ уравн. Фарадея} \end{cases}$$

div  $\mathbf{B} = 0$ ,  $p = (\gamma - 1)\rho\varepsilon$ .

Обозначения традиционные

отсутствие магн. зарядауравнение сост. сов. газа

# Параллельный алгоритм с использованием технологии МРІ



Основные подходы:

 Разбиение сетки на подобласти по числу вычислительных модулей



- Перенумерации узлов и ячеек сетки в подобласти
- Отложенные передача и прием данных
- Буферизованная запись на диск результатов расчета

#### Тестовая задача: Вихрь Орзага-Танга

Начальные данные

$$(\rho, v_1, v_2, v_3, p, B_1, B_2, B_3) =$$
  
=  $(\frac{25}{36\pi}, -\sin 2\pi x_2, \sin 2\pi x_1, 0, \frac{5}{12\pi}, -\sin 2\pi x_2, \sin 4\pi x_1, 0).$ 

Граничные условия: периодические



# Вихрь Орзага-Танга: Тестирование параллельного алгоритма

Гибридный вычислительный кластер К-100 Института прикладной математики им. М.В. Келдыша РАН:

- Состоит из 64 вычислительных узлов.
- Вычислительный узлел: 2 процессора Intel Xeon X5670 (6 ядер на процессор)

Тестирование ускорения на двух сетках в задаче о вихре Орзага-Танга на 256 ядрах

Число элементов	Доля параллельного кода	Макс. ускорение по закону Амдала	Реальное ускорение
585 508	99.98%	243	197
903 222	99.99%	249	226

#### Вихрь Орзага-Танга: Ускорение МРІ



Ускорение расчетов

#### Основные результаты

- Построены МГД и РМГД математические модели образования, коллимации и ускорения (вплоть до 5 × 10⁴ км/с) плазменного выброса из окрестностей компактного объекта. Зафиксированы всплески скорости выброса, приводящие к образованию сгустков вещества в потоке.
- Разработаны численные методы решения системы уравнений МГД и уравнения переноса излучения в двумерной осесимметричной постановке на треугольной неструктурированной сетке.
- Численные методы реализованы в виде программного комплекса, предназначенного для высокопроизводительных систем с общей памятью (технологии OpenMP и nVidia CUDA), в том числе использующих графические ускорители. Достигнуто ускорение трассировки лучей (OpenMP) в 10.8 раз на 12 ядрах и вычисления интеграла рассеяния (CUDA) в 80 раз на картах nVidia Tesla C2050.
- Создан алгоритм для решения двумерных уравнений МГД разрывным методом Галеркина второго порядка на неструктурированных сетках, позволяющий получать бездивергентные распределения магнитного поля. Создана параллельная версия программы с использованием технологии MPI. На кластере К-100 достигнуто ускорение в 226 раз на 256 ядрах.
- В вычислительных экспериментах получен устойчивый во времени хорошо коллимированный выброс плазмы. Коллимация обеспечивается осевым и тороидальным магнитным полем. Ускорение вещества достигается за счет давления излучения аккреционного диска.



#### • Организаторам за приглашение

• Всем присутствующим за внимание

Галанин Михаил Павлович galan@keldysh.ru