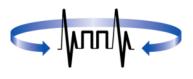


Автоматизация. Анализ данных. Оптимизация

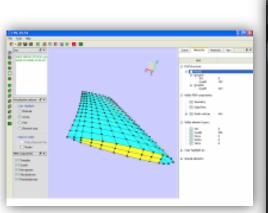
Содержание

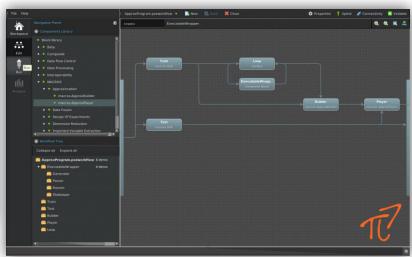

- > О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- Заключение

О компании DATADVANCE

DATADVANCE является частной российской компанией по разработке программного обеспечения и оказанию инжиниринговых услуг в области автоматизации инженерных расчётов, оптимизации и интеллектуального анализа данных.

Компания **DATADVANCE** основана в 2010 году в результате успешного окончания совместной научно-исследовательской программы между


Институтом Проблем Передачи Информации РАН, одним из ведущих математических центров в России, сотрудниками которого являются три лауреата Филдсовской премии, и



AIRBUS Airbus Group - глобальным лидером в аэрокосмической промышленности с ежегодным оборотом порядка 50 млрд. евро.

Наши продукты и услуги

- pSeven программный комплекс для автоматизации инженерных расчётов, анализа данных и оптимизации, основанный на технологии MACROS
- Внедрение, адаптация и разработка APM для решения специализированных задач
- > Инжиниринговый консалтинг

Наши ключевые клиенты

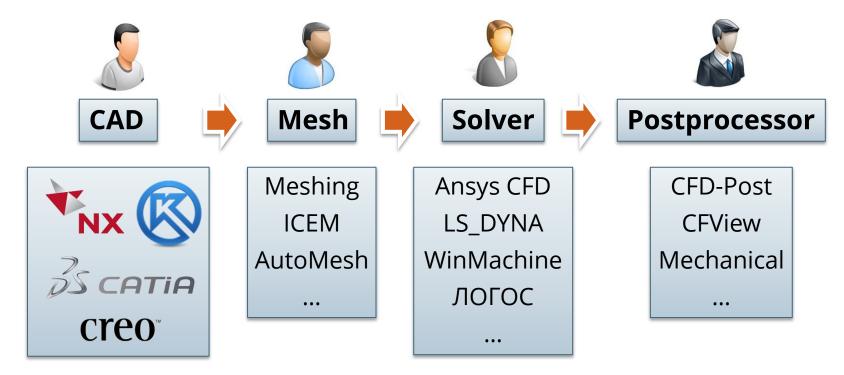
Содержание

- ➤ О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- Заключение

К вопросу о проектно-конструкторских работах...

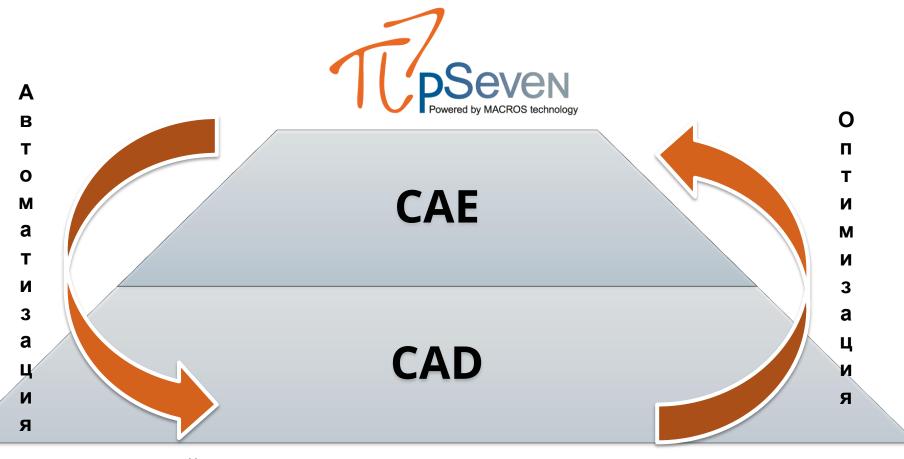
Основным средством уменьшения **сроков и снижения затрат** на разработку изделия считается использование систем автоматизированного проектирования (САПР) – <u>CAD</u>и <u>CAE</u> пакетов.

За счёт использования CAD/CAE пакетов на этапах раннего проектирования и инженерной проработки удаётся существенно сократить затраты на натурные испытания, доводку и устранения дефектов!


CAD - CAE -?

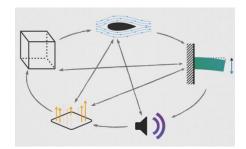
Таким образом, для эффективного решения задач по созданию новой техники необходимо связать CAD и CAE в единую среду, а также применить формализованные методики научного поиска, используя методы оптимизации и анализа данных.

создают 3D образ объекта, но не определяют совокупности его физических свойств.


Типичная схема использования CAD/CAE пакетов

- Неэффективный «ручной» обмен данными
- > Высокая вероятность ошибки при обмене данными
- Невозможность повторного использования расчётных моделей.
- Ручной подбор параметров модели, для удовлетворения требованиям ТЗ

Как результат – принятие необоснованных и неоптимальных проектных решений, и увеличение времени и стоимости проектирования.

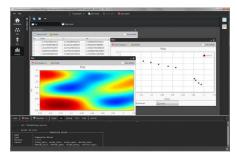

Программный комплекс pSeven

pSeven, основанный на алгоритмическом ядре **MACROS**, - это

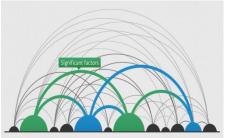
- > Автоматизация взаимодействия CAD/CAE систем и связывание их в единую среду,
- Широкие возможности по оптимизации и анализу моделей методами интеллектуального анализа данных.

Основные возможности pSeven

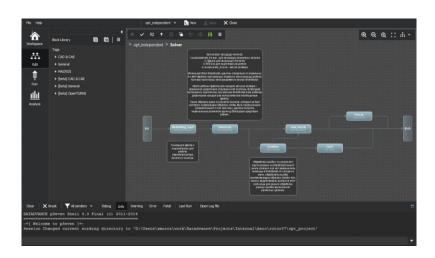
Интеграция CAD/CAE



Выполнение расчётных схем



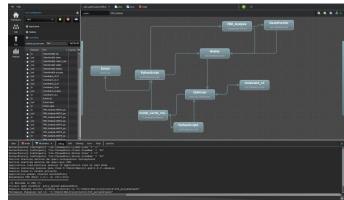
Визуализация и интерпретация результатов


Анализ данных и оптимизация

Что дает применение pSeven?

- > Улучшение характеристик проектируемых изделий, таких как качество, производительность, надежность, безопасность и др.
- **Сокращение сроков и стоимости** проектирования новых изделий.
- **Формализация и сохранение** знаний, опыта и методик проектирования за счёт автоматизации.
- **Решение сложных задач** предсказательного моделирования и оптимизации **в КБ**, без привлечения экспертов в этой области.
- **Повышение качества** взаимодействия групп разработчиков.

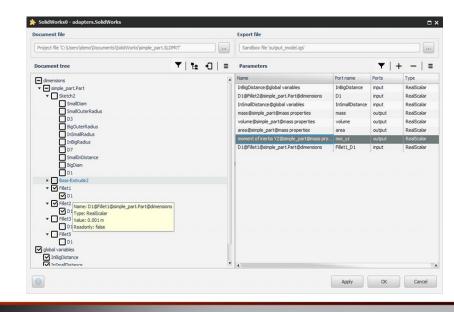
Содержание


- ➤ О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- > Заключение

DATADVANCE

Автоматизация расчётов и исследований

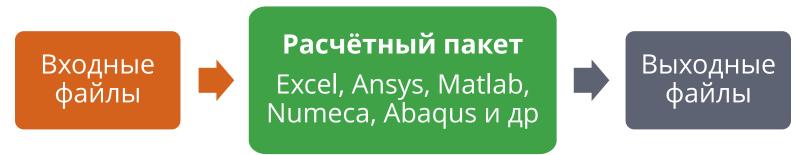
- Визуальное построение расчётных схем
 - Автоматизация расчётов
 - Автоматизация исследований
- ➤ Прямая интеграция с CAD системами
- Интеграция с САЕ системами (на основе текстовых файлов)
- Богатая библиотека компонентов: управление потоком исполнения, доступ к данным, передовые математические методы и многие др.
- Удобный и простой в использовании графический интерфейс


Построение расчётных схем любой сложности

- > Интеграция расчётных моделей любой сложности
 - Прямая интеграция с CAD системами
 - Интеграция с САЕ системами
 - Интеграция аналитических моделей (std.Formula)
 - Интеграция произвольного кода на Python (std.PythonScript)
- > Гибкая обработка ошибок расчётных моделей (std.Condition)
- > Управление потоком исполнения расчётной схемы
 - Ветвления (std.Condition)
 - Циклы (std.For, std.Foreach)
- > Построение иерархических расчётных схем (std.Composite)
 - Построение вложенных циклов
 - Вложенная оптимизация
 - Робастная оптимизация с использованием внешних модулей оценки робастности и надежности
- Автоматическое управление обменом файлами между блоками расчётной схемы, включая блоки, запущенные на удаленных машинах.

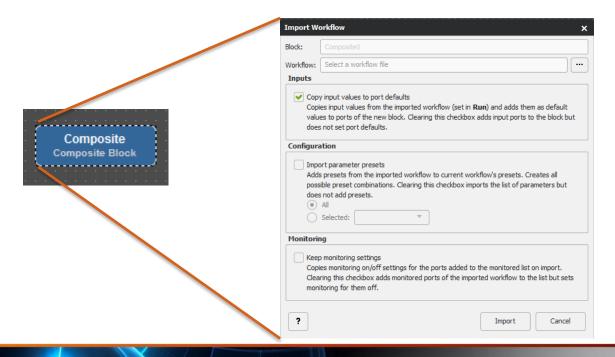
Интеграция с CAD системами

- ➤ Полная поддержка SolidWorks, KOMПAC-3D и Creo
 - Полная поддержка деталей и сборок
 - Полная поддержка глобальных переменных и единиц измерения
 - Экспорт в нейтральные форматы (STEP, IGES, ASIC, Parasolid и др.)
 - Удобная настройка взаимосвязей между параметрами детали или сборки и переменными блока pSeven
- Поддержка САТІА
 - Полная поддержка деталей
 - Экспорт в форматы STEP и IGES
- Поддержка NX (в pSeven 5)

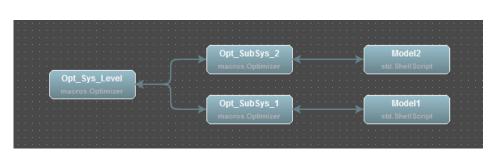

pSeven – единственный пакет в своем классе полностью поддерживающий КОМПАС-3D!

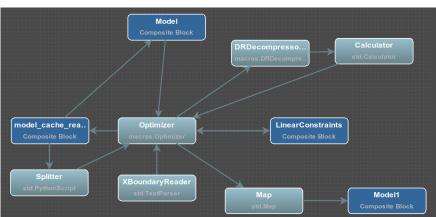
Интеграция с САЕ системами

Интеграция с САЕ системами реализована через текстовые входные и выходные файлы. Это позволяет эффективно работать с

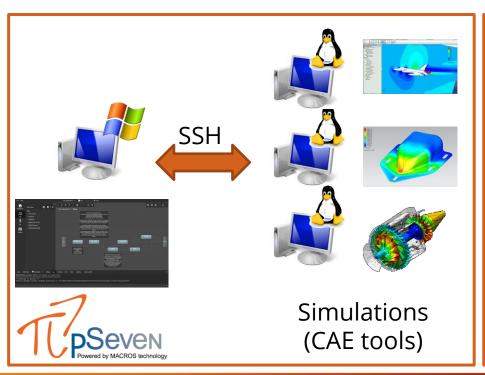

- Отечественными коммерческими пакетами <u>FlowVision</u>,
 <u>Фидесис</u>, <u>Универсальный Механизм</u> и другими
- > Зарубежными коммерческими пакетами, например, Numeca FINE/Turbo, Ansys CFX/Fluent, Ansys Mechanical, Abaqus, LS_DYNA, Star-CCM+ и многими другими
- > Корпоративными пакетами, включая программы для MS DOS
- Базами данных

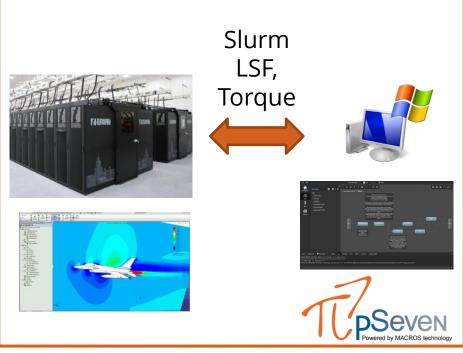
Повторное использование расчётных схем


pSeven позволяет повторно использовать ранее созданные расчетные схемы, загружая их в другие схемы как составные блоки.


Например, расчётная схема, в которую интегрирован и настроен внешний расчетный модуль, в дальнейшем может использоваться в новых схемах как готовый блок.

Автоматизация исследований


- ➤ Многодисциплинарный анализ (MDA):
 - Параметрические исследования
 - Анализ чувствительности
 - Планирование экспериментов
 - Построение метамоделей
- ➤ Многодисциплинарная оптимизация (MDO):
 - Одноуровневая
 - Многоуровневая (поддержка CO, ATC, BLISS и др.)
- > Анализ робастности и надежности (Uncertainty Quantification)

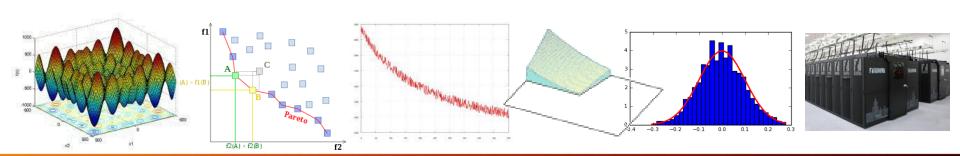


Distributed computing

- > Automatic workflow parallelization
- > Execute blocks on remote hosts to reduce overall simulation time
- > HPC support
 - Direct interfaces with Slurm, LSF and Torque
 - Automation of data transfer

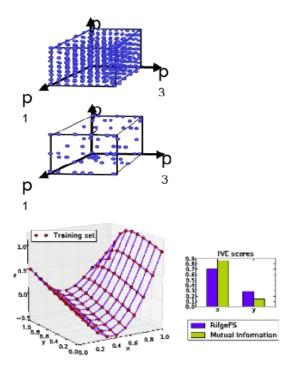
Содержание

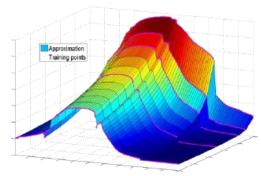
- ➤ О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- > Заключение


Оптимизация

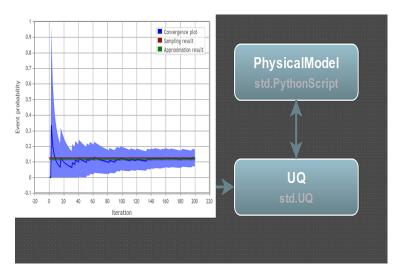
- > Поддерживаемые классы задач
 - Одно- и многокритериальная условная оптимизация
 - Удовлетворение ограничениям (CSP)
 - Оптимизация в условиях неопределенности (RDO и RBDO)
- Некоторые реализованные алгоритмы оптимизации
 - Автоматический адаптивный выбор наиболее подходящего оптимизационного метода для решаемой задачи (эвристика)
 - ПКП с адаптивным фильтром
 - Градиентный метод многокритериальной оптимизация
 - Оптимизация на основе метамоделей (Surrogate Based Optimization)
 - IOSO NM
- Возможность указания известных пользователю <u>особенностей</u>
 <u>модели</u> для ускорения процесса оптимизации
- Поддержка параллельного вычисления целевых функций и ограничений

Особенности задач инженерной оптимизации


- > Большая размерность оптимизационной задачи
 - Число параметров порядка О(100),
 - Число ограничений общего вида порядка О(100)
 - Несколько целевых функций
- > Нелинейность и многоэкстремальность
- > Зашумленность
- Наличие областей невычислимости
- ➤ Большое время одного вычисления → необходимость минимизации числа необходимых запусков модели


В pSeven реализованы алгоритмы, которые эффективно справляются со всеми эти особенностями!

Анализ моделей


- > Планирование экспериментов
 - Факториальные и композиционные планы
 - Х-оптимальные планы
 - Адаптивные планы
- > Анализ чувствительности
 - Корреляционный анализ
 - Оценка взаимной информации
 - Индексы Соболя
 - Полиномиальный хаос
- Автоматизированное построение метамоделей
 - Автоматический адаптивный выбор наиболее подходящего метода по данным
 - Классические методы (LR, RSM, ..)
 - Методы собственной разработки (HDA, GP, SGP, ...)
 - Оценка точности построенных моделей
 - Агрегация разноточных данных
 - Сглаживание

Анализ робастности и надежности

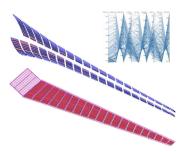
- > Создание вероятностных моделей
 - Параметрические распределения (нормальное, бета и др.)
 - Непараметрические модели (гистограмма, kernel smoothing и др.)
- > Оценка робастности
 - Монте-Карло
- > Анализ надежности
 - Аппроксимационные методы (FORM, SORM)
 - Монте-Карло
 - Квази Монте-Карло
 - Направленное сэмплирование

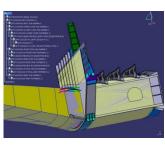
Содержание

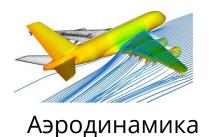
- ➤ О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- > Заключение

pSeven отлично зарекомендовал себя в самых различных отраслях промышленности!

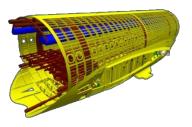



MIRBUS:сокращение времени проектирования на 10%*

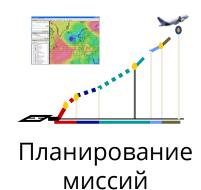

Концептуальное проектирование


Акустика

Композиты



Сборка



a²

Топливные системы

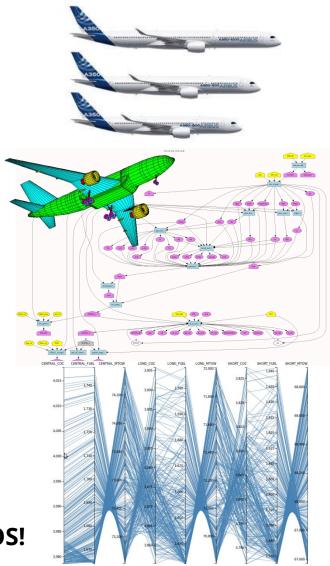
Прочность

* Пресс релиз Airbus

Многокритериальная оптимизация семейства самолётов

Задача

Оптимизация конфигурации трех самолётов семейства на этапе концептуального проектирования


Сложность

- 9 целевых функций (операционные расходы, максимальная взлётная масса, номинальная масса топлива)
- Десятки проектных параметров
- > Десятки ограничений

Результат

- Улучшение технических характеристик примерно на 5% по сравнению с исходными конфигурациями
- > Удовлетворение всем ограничениям
- Сокращение времени разработки до 20% по сравнению с решением задачу «вручную»

Впервые решена с помощью pSeven/MACROS!

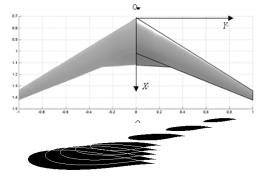
Оптимизация геометрии крыла самолёта

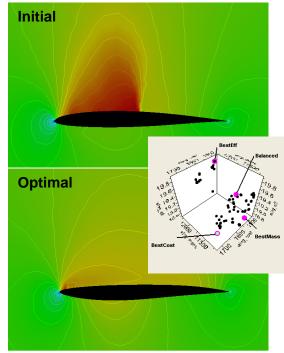
Задача

Оптимизировать форму крыла с целью улучшения аэродинамического качества на крейсерском полёте, уменьшения веса и стоимости крыла (статистические модели)

- ▶ Аэродинамика 3D CFD
- Вес и стоимость статистические модели

Проблемы


- Большая размерность сотни параметров
- Время одного CFD расчёта часы


Решение

- Снижение размерности исходной задачи за счёт усовершенствованной параметризации формы профиля
- Многокритериальная оптимизация на базе метамоделей

Результат

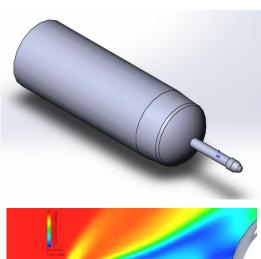
Улучшение целевых функций на **5-10%** при минимальном числе вызовов CFD!

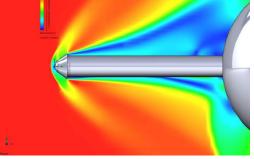
Аэродинамическая оптимизация геометрии насадка

Задача

Обеспечить наименьшее аэродинамическое сопротивления конструкции, варьируя длину и параметры, характеризующие форму насадка, при сверхзвуковом обсекании на углах атаки α = 0°, 3°, 6°.

Трудности


- Высокая степень нелинейности модели:
- Большая вычислительная сложность:
 - Решатель FloEFD
 - Время счёта 2-3 часов на 6 ядрах.


Решение

Использование pSeven для автоматизации расчётов и методов оптимизации на основе метамоделей

Результат

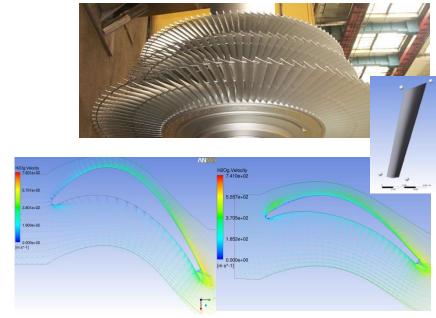
Сокращение сопротивления на 5%!

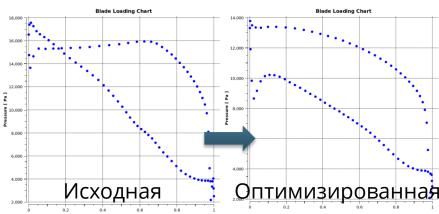
Оптимизация геометрии лопатки последней ступени паровой турбины

Задача

 Поднять КПД последней ступени паровой турбины

Трудности


- Высокая размерность задачи
- Большое время 3D газодинамического расчёта (часы)


Решение

- Эффективное малоразмерное описание геометрии лопатки (24 параметра)
- Многоуровневая стратегия оптимизации
- Оптимизация на основе метамоделей

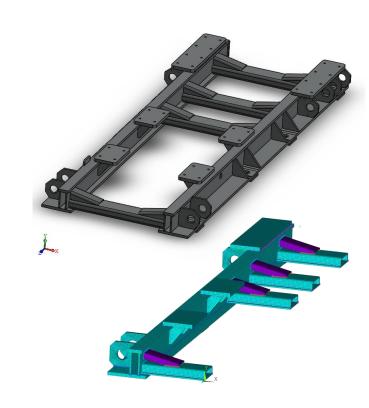
Результат

Оптимизация геометрии роторной лопатки позволило поднять КПД ступени на 1,8%

Оптимизация рамы дизель-генератора

Задача

Облегчить конструкцию, обеспечив прочность и жесткость конструкции **Трудности**


- Высокая размерность 37 геометрических параметров
- > 3 нагрузочных случая

Решение

- Использование возможностей интеграции pSeven c SolidWorks для параметрического перестроения геометрии сборки
- > Оптимизация на основе метамоделей

Результат

Уменьшение массы рамы на **12% (170 кг)** по сравнению с начальной конфигурацией рамы

^{*} Пилотный проект с <u>Центром инновационного развития СТМ</u>

Оптимизации диска турбины низкого давления

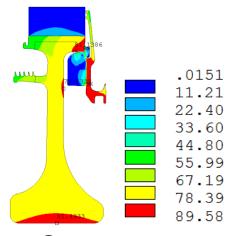
Цель оптимизации

- Минимизация массы конструкции
- Уровень напряжений в ступице не более
 82 кгс/мм²
- Разница радиальных перемещений выступа не более 0.07 мм

Результат оптимизации

- Уменьшение массы на 20% (с 30,77 до 24,48 кг)
- ➤ Напряжение 81,5 кгс/мм²
- ➤ Перемещения 0,068 мм
- Количество итераций всего 400

Детали


- Варьируется 12 параметров
- Расчёт теплового состояния, напряжений и перемещений в Ansys Mechanical.

0.012 10.3 20.6 30.9 41.3 51.6 61.9 72.2 82.5

Исходная

Эквивалентные

напряжения, кгс/мм²

Оптимальная

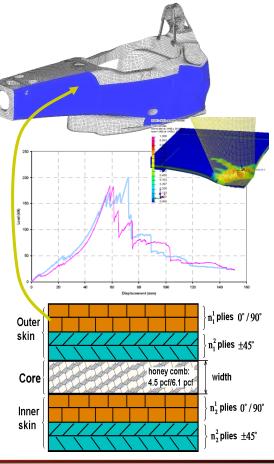
Минимизация массы композитной боковой панели болида Формула-1

Задача

Уменьшить вес боковой панели болида с учетом различных прочностных ограничений.

Анализ

Натурные эксперименты и моделирование с помощью метода конечных элементов. Необходимость натурных экспериментов обусловлена относительно невысокой точностью численного моделирования.


Решение

- Агрегация экспериментальных данных и данных численного моделирования
- Построение метамодели, обладающей необходимой точностью
- Оптимизация полученной метамодели

Результат

Уменьшение на 10% массы одной из самых больших деталей болида и сокращение времени проектирования.

Содержание

- ➤ О компании DATADVANCE
- > Программный комплекс pSeven
 - Зачем нужен pSeven?
 - Автоматизация расчётов и исследований
 - Математические методы
 - Визуализация и интерпретация результатов
- > Некоторые примеры решенных задач
- > Заключение

Заключение

pSeven – это пакет для автоматизации инженерных расчётов, анализа данных и многодисциплинарной оптимизации, внедрение которого позволяет

- > Улучшить характеристики проектируемых изделий, такие как качество, производительность, надежность, безопасность и др.
- **Сократить сроки и стоимость проектирования** новых изделий.
- **Формализовать и сохранить знание**, опыт и методики проектирования за счёт автоматизации.

Сайт

www.datadvance.net

Социальные сети

Покровский бульвар, д. 3, стр. 1Б 109028, Москва Tel: +7 495 781 60 88

building 74 A, E 18, Willy-Messerschmitt-Strasse 1 D 8552, Ottobrunn, Germany Tel: +49 (89) 6073-58-67

18 rue Marius Tercé, 31300, Toulouse, FRANCE

Tel: +33 (5) 61 16 88 92