Разработка быстрых алгоритмов обработки сейсмических данных: регуляризация, подавление шумов и кратных волн

Дучков А.А., ИНГГ СО РАН Andersson F., Lund University

Темы

Будут рассмотрены два типа анализа данных:

1. Оптимальные представления (разложения) данных.

2. Выделение геометрических атрибутов (дальнейшее использование в обработке).

План

- реализация быстрого преобразования
 Фурье на нерегулярных сетках (USFFT)
- разложение данных по гауссовым волновым пакетам и приложения
- быстрое высокоразрешающее преобразование Радона и приложения
- структурные тензоры для определения наклонов и разделения полей

Методы

Разложение по базисам

$$u(\mathbf{x}) = \sum_{\gamma} \widetilde{u}_{\gamma} \varphi_{\gamma}(\mathbf{x})$$

- базис (фрейм)
- эффективные процедуры разложения

Разреженная инверсия (высокоразрешающая, sparse inversion) u = Lm

$\mathbf{u} \approx \mathbf{L}\mathbf{m}, \quad \mathbf{m} - paspeskethoe$

$$\|\mathbf{Lm} - \mathbf{u}\|_{2}^{2} + \mu \|\mathbf{m}\|_{p}, \quad 1 \le p \le 2$$

• iterative soft thresholding, IRLS (*l1*)

[Daubechies et al., 2004, 2010]

• greedy methods

[Tanushev et al., 2010]

combination

[Andersson et al., 2011]

Высокоразрешающее разложение

$$\mathbf{C} : \mathbf{u} = u(\mathbf{x}) \rightarrow \widetilde{\mathbf{u}} = \{\widetilde{u}_{\gamma}\}\$$

$$u(\mathbf{x}) \approx \mathbf{C}^{-1}\widetilde{\mathbf{u}} = \sum_{\gamma} \widetilde{u}_{\gamma} \varphi_{\gamma}(\mathbf{x})$$
Iterative soft thresholding
$$\widetilde{\mathbf{u}}^{n+1} = S_{\mu} \left(\widetilde{\mathbf{u}}^{n} - \Pi \widetilde{\mathbf{u}}^{n} + \mathbf{Cd}\right)$$

$$\Pi = \mathbf{C}\mathbf{C}^{-1},$$

$$\Pi_{\gamma'\gamma} = \left\langle \varphi_{\gamma'}, \varphi_{\gamma} \right\rangle$$

Быстрое преобразование Фурье на нерегулярных сетках (USFFT) (1D, 2D, 3D)

Преобразование Фурье

- FFT (Fast Fourier Transform) $\hat{u}_{i} = \sum u_{k} e^{-i2\pi jk/N}$ $O(N \log N)$ k=0
- USFFT (Unequally-spaced Fast Fourier Transform)

35

волновые пакеты

[Dutt & Rokhlin, 1993; Beylkin, 1995]

USFFT

- 1. Удвоение сетки (дополнение нулями) и умножение на весовую функцию
- 2. Прямое FFT на регулярную сетку, ~10% времени
- 3. «Интерполяция», суммирование с весом в шаре для каждой точки нерегулярной сетки, ~90% времени

Ускорение USFFT

Анализ производительности

Время прямого и обратного 3D USFFT (в секундах), Nus=N³

N	Послед. версия Intel i7		Intel MKL + OpenMP(4) Intel i7		Nvidia Cuda Tesla C2050	
	пр.	обр.	пр.	обр.	пр.	обр.
2 ⁶	15.27	15.47	0.99	1.57	0.55	1.22
27	129.35	136.22	8.06	13.50	2.7	12.41
2 ⁸	1070.92	1092.92	65.23 <u>~16x</u>	118.53 <u>~9x</u>	19.7 <u>53x</u>	67.10 <u>~16x</u>

Оптимизация для платформ Интел

Профилирование: значительное время занимает вычисление весов (VTunes):

for $(k = -M1; k \le M1; k++)$ {	0.678s
dz = (muz_j + k - x[j].z*(double)(2*N[2]));	0.172s
p3 = exp(-lambda*dz*dz);	5.089s
for(l = -M1; l <= M1; l++){	0.720s
$dy = (muy_j + 1 - x[j].y^{*}(double)(2^{*}N[1]));$	0.830s
p2 = exp(-lambda*dy*dy);	45.205s
for $(m = -M1; m \le M1; m++)$ {	18.280s
$dx = (mux_j + m - x[j].x^*(double)(2^*N[0]));$	6.549s
p1 = exp(-lambda*dx*dx);	158.857s
res.x += p1 * p2 * p3 * G[strides[0]+strides[3]*(muz j+k+N[2])+strides[2]*(muy j+	314.572s
res.y += p1 * p2 * p3 * G[strides[0]+strides[3]*(muz_j+k+N[2])+strides[2]*(muy_j+	38.280s
}	
}	
}	

Ускорение

Различные стратегии: использование вспомогательных массивов для хранения "весов"

Оптимизация для платформ Интел

• Предварительная сортировка точек нерегулярной сетки может повысить вероятность попадани по кэшу.

Ускорение

Разложение сейсмических данных по гауссовым волновым пакетам

Разложение данных по базисам

Разложение по гауссовым пакетам

 $u(\mathbf{x}) = \sum \widetilde{u}_{\gamma} \varphi_{\gamma}(\mathbf{x})$

прямое/обратное преобр-е:

 $u(\mathbf{x}) \longleftrightarrow \{\widetilde{u}_{\gamma}\}$

$$L_2$$
 L_1 ℓ

Кервлеты

[Candes, Demanet, Donoho & Ying, 2006]

Гауссовы волновые пакеты

[Andersson, Carlsson & Tenorio, 2011]

Сжатие данных

~ 600 curvelets

Сжатие данных

~ 500 GWP

Гауссовы волновые пакеты

$$u(\mathbf{x}) = \sum_{\gamma} \widetilde{u}_{\gamma} \varphi_{\gamma}(\mathbf{x})$$

- Оптимальный базис для представления сейсмических данных (разреженное представление)
- Оптимальный для геометрического анализа набор характеристик базисных функций (поиск осей синфазности)

[Andersson F., Duchkov A. et al, 2011]

CR(Compression ratio)= Ncoeffs/Npixels=0.02

Интерполяция данных

$$u(x) \xrightarrow{C} \{u_{\gamma}\} \xrightarrow{\text{отсев малых коэ} \varphi - ob} \{u_{\widehat{\gamma}}\} \xrightarrow{C^{-1}} u'(x)$$

128х50 пропущенных трасс

CR(Compression ratio)= Ncoeffs/Npixels=0.02

Интерполяция пропущенных данных

[SPARCO toolbox]

Интерполяция пропущенных данных

кервлеты

гауссовы волновые пакеты

Определение наклонов

150 curved GWPs

Определение кривизн

Shotgather 1

Anti-aliasing

Anti-aliasing

Anti-aliasing

Sigsbee CMP gather (1159 GWPs)

Продолжение поля

Быстрое преобразование Радона

Преобразование Радона

Быстрые алгоритмы суммирования

Быстрое преобразование Радона (параболическое, гиперболическое, многомерное)

USFFT

Подавление кратных волн

Original CMP

Спектр Радона

разреженная инверсия t, sec

q, sec²/km²

стандартное преобразование

q, sec²/km²

Подавление кратных волн

Интерполяция

Спектр Радона

разреженная инверсия τ , sec

q, sec²/km²

стандартное преобразование

q, sec²/km²

Интерполяция и подавление кратных

Структурные тензоры для определения осей синфазности

Определение осей синфазности

Определение осей синфазности (2 интерферирующих волны)

$$u_{0}(x, y)$$

$$u(x, y, t) = \iint \hat{u}_{0}(\mathbf{k})e^{2\pi i \langle \langle \mathbf{x}, \mathbf{k} \rangle - t \| \mathbf{k} \| \rangle} dk_{x} dk_{y}$$

$$\mathbf{x} = (x, y)$$

$$\mathbf{x} = (x, y)$$

$$\mathbf{k} = (k_{x}, k_{y})$$

$$\mathbf{k} = (k_{x}, k_{y})$$

 $(\varphi_1(x, y), \varphi_2(x, y))$

Направления (синфазности) в данных и разделение полей по направлениям

Разделение полей

 $L_{\varphi}u_0(x, y) =$ $= \int \left(\iint \hat{u}_0(\mathbf{k}) e^{2\pi i (\langle \mathbf{x}, \mathbf{k} \rangle - t \| \mathbf{k} \| + \langle \mathbf{n}(\varphi(\mathbf{x})), \mathbf{k} \rangle)} dk_x dk_y \right) e^{-\beta t^2} dt$

Разделение полей

Данные для marmousi (ВСП)

Разделение полей

Разделение изображений

Выводы

Рассмотрены процедуры обработки и анализа данных на основе быстрого преобразования Фурье на нерегулярных сетках (USFFT):

- разложение данных по гауссовым волновым пакетам и приложения
- быстрое высокоразрешающее преобразование Радона и приложения
- структурные тензоры для определения наклонов и разделения полей

Спасибо за внимание!

Сейсмическая миграция, миграционный скоростной анализ (быстрые алгоритмы на основе гауссовых волновых пакетов)

Модель с низкосростной аномалией

Разложение данных

Shotgather 5

original

~ 50 flat GWPs

Shotgather 5

Propagation

Shotgather 12, 170 packets

Миграция в обращенном времени

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАЗЛИЧНЫХ СТРАТЕГИЙ РАСПАРАЛЛЕЛИВАНИЯ АЛГОРИТМА ПРЕОБРАЗОВАНИЯ ФУРЬЕ НА НЕРЕГУЛЯРНЫХ СЕТКАХ

Выполнил: Матвеев А.С., НГУ ФИТ, 4 курс Руководители: Дучков А.А., Романенко А.А.

Transforms

$$u(\mathbf{x}) = \sum_{\gamma} \widetilde{u}_{\gamma} \varphi_{\gamma}(\mathbf{x})$$

- basis (frame)
- efficient decomposition/reconstruction

Decomposition/reconstruction image $u(\mathbf{x})$ FHI dividing into boxes Interpolate spect-rum for each box IFFT on eac box coefficients \tilde{u}_{γ}

Box tiling of the Fourier space

Box tiling of the Fourier space

Акустическая инверсия (сверточная модель)

 $f_{data}(t) = f(t) * s(t) + n(t)$

Анизотропная диффузия

зотропная диффузия с производн

Истинные данные

